Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vasc Specialist Int ; 39: 34, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37936477

RESUMO

Since the beginning of severe acute respiratory syndrome Coronavirus 2 pandemic, many reports have pointed to states of incrieased hypercoagulability during the acute phase of the disease. We report a 63-year-old female who developed acute mesenteric ischemia due to celiac trunk and superior mesenteric artery thrombi together with acute lower extremity ischemia caused by saddle embolism of the iliac bifurcation and thrombosis of the left external iliac artery. These thrombi developed 20 days after discharge from an intensive care unit due to severe pneumonia and pulmonary embolism associated with COVID-19. The patient had consecutive interventions. Surgical thrombectomy for aortoiliac thrombosis was performed and the mesenteric thrombosis was treated by percutaneous endovascular intervention. We emphasize that the prothrombotic state after COVID-19 infection may persist long after the acute symptomatic phase.

2.
ACS Appl Mater Interfaces ; 15(35): 41666-41679, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37582254

RESUMO

The development of solution-processable n-type molecular semiconductors that exhibit high electron mobility (µe ≥ 0.5 cm2/(V·s)) under ambient conditions, along with high current modulation (Ion/Ioff ≥ 106-107) and near-zero turn on voltage (Von) characteristics, has lagged behind that of other semiconductors in organic field-effect transistors (OFETs). Here, we report the design, synthesis, physicochemical and optoelectronic characterizations, and OFET performances of a library of solution-processable, low-LUMO (-4.20 eV) 2,2'-(2,8-bis(3-alkylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile small molecules, ß,ß'-Cn-TIFDMTs, having varied alkyl chain lengths (n = 8, 12, 16). An intriguing correlation is identified between the solid-isotropic liquid transition enthalpies and the solubilities, indicating that cohesive energetics, which are tuned by alkyl chains, play a pivotal role in determining solubility. The semiconductors were spin-coated under ambient conditions on densely packed (grafting densities of 0.19-0.45 chains/nm2) ultrathin (∼3.6-6.6 nm) polystyrene-brush surfaces. It is demonstrated that, on this polymer interlayer, thermally induced dispersive interactions occurring over a large number of methylene units between flexible alkyl chains (i.e., zipper effect) are critical to achieve a favorable thin-film crystallization with a proper microstructure and morphology for efficient charge transport. While C8 and C16 chains show a minimal zipper effect upon thermal annealing, C12 chains undergo an extended interdigitation involving ∼6 methylene units. This results in the formation of large crystallites having lamellar stacking ((100) coherence length ∼30 nm) in the out-of-plane direction and highly favorable in-plane π-interactions in a slipped-stacked arrangement. Uninterrupted microstructural integrity (i.e., no face-on (010)-oriented crystallites) was found to be critical to achieving high mobilities. The excellent crystallinity of the C12-substituted semiconductor thin film was also evident in the observed crystal lattice vibrations (phonons) at 58 cm-1 in low-frequency Raman scattering. Two-dimensional micrometer-sized (∼1-3 µm), sharp-edged plate-like grains lying parallel with the substrate plane were observed. OFETs fabricated by the current small molecules showed excellent n-channel behavior in ambient with µe values reaching ∼0.9 cm2/(V·s), Ion/Ioff ∼ 107-108, and Von ≈ 0 V. Our study not only demonstrates one of the highest performing n-channel OFET devices reported under ambient conditions via solution processing but also elucidates significant relationships among chemical structures, molecular properties, self-assembly from solution into a thin film, and semiconducting thin-film properties. The design rationales presented herein may open up new avenues for the development of high-electron-mobility novel electron-deficient indenofluorene and short-axis substituted donor-acceptor π-architectures via alkyl chain engineering and interface engineering.

3.
J Phys Chem A ; 126(26): 4199-4210, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35658432

RESUMO

In this study, we performed a detailed investigation of the S1 potential energy surface (PES) of o-carborane-anthracene (o-CB-Ant) with respect to the C-C bond length on o-CB and the dihedral angle between o-CB and Ant moieties. The effects of different substituents (F, Cl, CN, and OH) on carbon- or boron-substituted o-CB, along with a π-extended acene-based fluorophore, pentacene, on the nature and energetics of S1 → S0 transitions are evaluated. Our results show the presence of a non-emissive S1 state with an almost pure charge transfer (CT) character for all systems as a result of significant C-C bond elongation (C-C = 2.50-2.56 Å) on o-CB. In the case of unsubstituted o-CB-Ant, the adiabatic energy of this CT state corresponds to the global minimum on the S1 PES, which suggests that the CT state could be involved in emission quenching. Despite large deformations on the o-CB geometry, predicted energy barriers are quite reasonable (0.3-0.4 eV), and the C-C bond elongation can even occur without a noticeable energy penalty for certain conformations. With substitution, it is shown that the dark CT state becomes even more energetically favorable when the substituent shows -M effects (e.g., -CN), whereas substituents showing +M effects (e.g., -OH) can result in an energy increase for the CT state, especially for partially stretched C-C bond lengths. It is also shown that the relative energy of the CT state on the PES depends strongly on the LUMO level of the fluorophore as this state is found to be energetically less favorable compared to other conformations when anthracene is replaced with π-extended pentacene. To our knowledge, this study shows a unique example of a detailed theoretical analysis on the PES of the S1 state in o-CB-fluorophore systems with respect to substituents or fluorophore energy levels. Our findings could guide future experimental work in emissive o-CB-fluorophore systems and their sensing/optoelectronic applications.

4.
Nat Commun ; 12(1): 6119, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675208

RESUMO

Molecular engineering via functionalization has been a great tool to tune noncovalent intermolecular interactions. Herein, we demonstrate three-dimensional highly crystalline nanostructured D(C7CO)-BTBT films via carbonyl-functionalization of a fused thienoacene π-system, and strong Raman signal enhancements in Surface-Enhanced Raman Spectroscopy (SERS) are realized. The small molecule could be prepared on the gram scale with a facile synthesis-purification. In the engineered films, polar functionalization induces favorable out-of-plane crystal growth via zigzag motif of dipolar C = O···C = O interactions and hydrogen bonds, and strengthens π-interactions. A unique two-stage film growth behavior is identified with an edge-on-to-face-on molecular orientation transition driven by hydrophobicity. The analysis of the electronic structures and the ratio of the anti-Stokes/Stokes SERS signals suggests that the π-extended/stabilized LUMOs with varied crystalline face-on orientations provide the key properties in the chemical enhancement mechanism. A molecule-specific Raman signal enhancement is also demonstrated on a high-LUMO organic platform. Our results demonstrate a promising guidance towards realizing low-cost SERS-active semiconducting materials, increasing structural versatility of organic-SERS platforms, and advancing molecule-specific sensing via molecular engineering.

5.
J Phys Chem B ; 125(42): 11717-11731, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644090

RESUMO

Rod-shaped oligo(p-phenyleneethynylene) (OPE) offers an attractive π-framework for the development of solution-processable highly fluorescent molecules having tunable hybridized local and charge transfer (HLCT) excited states and (reverse) intersystem crossing ((R)ISC) channels. Herein, an HLCT oligo(p-phenyleneethynylene) library was studied for the first time in the literature in detail systematically via experiment and theory. The design, synthesis, and full characterization of a new highly fluorescent (ΦPL-solution ∼ 1) sky blue emissive 4',4‴-((2,5-bis((2-ethylhexyl)oxy)-1,4-phenylene)bis(ethyne-2,1-diyl))bis(N,N-diphenyl-[1,1'-biphenyl]-4-amine) (2EHO-TPA-PE) was also reported. The new molecule consists of a D'-Ar-π-D-π-Ar-D' molecular architecture with an extended π-spacer and no acceptor unit, and detailed structural, physicochemical, single-crystal, and optoelectronic characterizations were performed. A high solid-state quantum efficiency (ΦPL-solid state ∼ 0.8) was achieved as a result of suppressed exciton-phonon/vibronic couplings (no π-π interactions and multiple (14 per dimeric form) strong C-H···π interactions). Strong solution-phase/solid-state dipole-dependent tunable excited state behavior (local excited (LE) → HLCT → charge transfer (CT)) and decay dynamics covering a wide spectral region were demonstrated, and the CT state was observed to be highly fluorescent despite extremely large Stokes shift (∼130 nm)/fwhm (∼125 nm) and significant charge separation (0.75 charge·nm). Employing the Lippert-Mataga model, along with detailed photophysical studies and TDDFT calculations, key relationships between molecular design-electronic structure-exciton characteristics were elucidated with regards to HLCT and hot exciton channel formations. The interstate coupling between CT and LE states and the interplay of this coupling with respect to medium polarity were explored. A key relationship between excited-state symmetry breaking process and the formation of HLCT state was discussed for TPA-ended rod-shaped OPE π-systems. (R)ISC-related delayed fluorescence (τ ∼ 2-6 ns) processes were evident following the prompt decays (∼0.4-0.9 ns) both in the solution and in the solid-state. As a unique observation, the delayed fluorescence could be tuned and facilitated via small dielectric changes in the medium. Our results and the molecular engineering perspectives presented in this study may provide unique insights into the structural and electronic factors governing tunable excited state and hot-exciton channel formations in OPEs for (un)conventional solution-processed luminescence applications.


Assuntos
Luminescência , Alcinos , Éteres , Fluorescência , Estrutura Molecular
6.
Ann Vasc Dis ; 14(2): 185-187, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34239648

RESUMO

Carotid body tumors are defined as unusual tumors of neuroectodermal origin that occur in the carotid bifurcation. These generally benign masses grow slowly; then, they become symptomatic with enlargement. In this study, we present a case of a 66-year-old female patient diagnosed with a carotid body tumor with a diameter of 8×9×10 cm. The patient was surgically treated 2 days after embolization due to the wideness of the mass and surgical comorbidity. Furthermore, this article puts emphasis on the importance of embolization before curative surgery in carotid body tumors with large and high blood supply.

7.
Nat Commun ; 10(1): 5502, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796731

RESUMO

Nanostructured molecular semiconductor films are promising Surface-Enhanced Raman Spectroscopy (SERS) platforms for both fundamental and technological research. Here, we report that a nanostructured film of the small molecule DFP-4T, consisting of a fully π-conjugated diperfluorophenyl-substituted quaterthiophene structure, demonstrates a very large Raman enhancement factor (>105) and a low limit of detection (10-9 M) for the methylene blue probe molecule. This data is comparable to those reported for the best inorganic semiconductor- and even intrinsic plasmonic metal-based SERS platforms. Photoluminescence spectroscopy and computational analysis suggest that both charge-transfer energy and effective molecular interactions, leading to a small but non-zero oscillator strength in the charge-transfer state between the organic semiconductor film and the analyte molecule, are required to achieve large SERS enhancement factors and high molecular sensitivities in these systems. Our results provide not only a considerable experimental advancement in organic SERS figure-of-merits but also a guidance for the molecular design of more sensitive SERS systems.

8.
ACS Appl Mater Interfaces ; 11(47): 44474-44486, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31609580

RESUMO

The development of solution-processable fluorescent small molecules with highly efficient deep-blue electroluminescence is of growing interest for organic light-emitting diode (OLED) applications. However, high-performance deep-blue fluorescent emitters with external quantum efficiencies (EQEs) over 5% are still scarce in OLEDs. Herein, a novel highly soluble oligo(p-phenyleneethynylene)-based small molecule, 1,4-bis((2-cyanophenyl)ethynyl)-2,5-bis(2-ethylhexyloxy)benzene (2EHO-CNPE), is designed, synthesized, and fully characterized as a wide band gap (2.98 eV) and highly fluorescent (ΦPL = 0.90 (solution) and 0.51 (solid-state)) deep-blue emitter. The new molecule is functionalized with cyano (-CN)/2-ethylhexyloxy (-OCH2CH(C2H5)C4H9) electron-withdrawing/-donating substituents, and ethynylene is used as a π-spacer to form an acceptor (A)-π-donor (D)-π-acceptor (A) molecular architecture with hybridized local and charge transfer (HLCT) excited states. Physicochemical and optoelectronic characterizations of the new emitter were performed in detail, and the single-crystal structure was determined. The new molecule adopts a nearly coplanar π-conjugated framework packed via intermolecular "C-H···π" and "C-H···N" hydrogen bonding interactions without any π-π stacking. The OLED device based on 2EHO-CNPE shows an EQEmax of 7.06% (EQE = 6.30% at 200 cd/m2) and a maximum current efficiency (CEmax) of 5.91 cd/A (CE = 5.34 cd/A at 200 cd/m2) with a deep-blue emission at CIE of (0.15, 0.09). The electroluminescence performances achieved here are among the highest reported to date for a solution-processed deep-blue fluorescent small molecule, and, to the best of our knowledge, it is the first time that a deep-blue OLED is reported based on the oligo(p-phenyleneethynylene) π-framework. TDDFT calculations point to facile reverse intersystem crossing (RISC) processes in 2EHO-CNPE from high-lying triplet states to the first singlet excited state (T2/T3 → S1) (hot-exciton channels) that enable a high radiative exciton yield (ηr ∼ 69%) breaking the theoretical limit of 25% in conventional fluorescent OLEDs. These results demonstrate that properly designed fluorescent oligo(p-phenyleneethynylenes) can be a key player in high-performance deep-blue OLEDs.

9.
Chempluschem ; 84(9): 1423-1431, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944046

RESUMO

The molecular design, synthesis, and characterization of an acceptor-donor-acceptor (A-D-A) semiconductor BDY-Ph-2T-Ph-BDY comprising a central phenyl-bithiophene-phenyl π-donor and BODIPY π-acceptor end-units is reported. The semiconductor shows an optical band gap of 2.32 eV with a highly stabilized HOMO/LUMO (-5.74 eV/-3.42 eV). Single-crystal X-ray diffraction (XRD) reveals D-A dihedral angle of ca. 66° and strong intermolecular "C-H ⋅⋅⋅ π (3.31 Å)" interactions. Reduced π-donor strength, increased D-A dihedral angle, and restricted intramolecular D-A rotations allows for both good fluorescence efficiency (ΦF =0.30) and n-channel OFET transport (µe =0.005 cm2 /V ⋅ s; Ion /Ioff =104 -105 ). This indicates a much improved (6-fold) fluorescence quantum yield compared to the meso-thienyl BODIPY semiconductor BDY-4T-BDY. Photophysical studies reveal important transitions between locally excited (LE) and twisted intramolecular charge-transfer (TICT) states in solution and the solid state, which could be controlled by solvent polarity and nano-aggregation. This is the first report of such high emissive characteristics for a BODIPY-based n-channel semiconductor.

10.
Chempluschem ; 84(1): 18-37, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31950740

RESUMO

The rapid emergence of organic (opto)electronics as a promising alternative to conventional (opto)electronics has been achieved through the design and development of novel π-conjugated systems. Among various semiconducting structural platforms, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) π-systems have recently attracted attention for use in organic thin-films transistors (OTFTs) and organic photovoltaics (OPVs). This Review article provides an overview of the developments in the past 10 years on the structural design and synthesis of BODIPY-based organic semiconductors and their application in OTFT/OPV devices. The findings summarized and discussed here include the most recent breakthroughs in BODIPYs with record-high charge carrier mobilities and power conversion efficiencies (PCEs). The most up-to-date design rationales and discussions providing a strong understanding of structure-property-function relationships in BODIPY-based semiconductors are presented. Thus, this review is expected to inspire new research for future materials developments/applications in this family of molecules.

11.
Nanoscale ; 10(21): 9987-9995, 2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29774920

RESUMO

π-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT π-core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C3-COHN-Ahx-VVAGKK-Am) and the C8-BTBT-peptide (C8-BTBT-C3-COHN-Ahx-VVAGKK-Am), as ß-sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(±1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type π-π interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 × 10-6 S cm-1. The BTBT π-core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.


Assuntos
Nanofios , Peptídeos/química , Semicondutores , Tiofenos/química , Interações Hidrofóbicas e Hidrofílicas
12.
Nat Mater ; 16(9): 918-924, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28783157

RESUMO

π-Conjugated organic semiconductors have been explored in several optoelectronic devices, yet their use in molecular detection as surface-enhanced Raman spectroscopy (SERS)-active platforms is unknown. Herein, we demonstrate that SERS-active, superhydrophobic and ivy-like nanostructured films of a molecular semiconductor, α,ω-diperfluorohexylquaterthiophene (DFH-4T), can be easily fabricated by vapour deposition. DFH-4T films without any additional plasmonic layer exhibit unprecedented Raman signal enhancements up to 3.4 × 103 for the probe molecule methylene blue. The combination of quantum mechanical computations, comparative experiments with a fluorocarbon-free α,ω-dihexylquaterthiophene (DH-4T), and thin-film microstructural analysis demonstrates the fundamental roles of the π-conjugated core fluorocarbon substitution and the unique DFH-4T film morphology governing the SERS response. Furthermore, Raman signal enhancements up to ∼1010 and sub-zeptomole (<10-21 mole) analyte detection were accomplished by coating the DFH-4T films with a thin gold layer. Our results offer important guidance for the molecular design of SERS-active organic semiconductors and easily fabricable SERS platforms for ultrasensitive trace analysis.


Assuntos
Materiais Revestidos Biocompatíveis/química , Fluorocarbonos/química , Ouro/química , Membranas Artificiais , Semicondutores , Tiofenos/química , Análise Espectral Raman
13.
ACS Appl Mater Interfaces ; 9(21): 18199-18206, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28480705

RESUMO

The design and development of three-dimensional (3D) nanostructures with high surface-enhanced Raman scattering (SERS) performances have attracted considerable attention in the fields of chemistry, biology, and materials science. Nevertheless, electrospraying of organic small molecules on low-cost flexible substrates has never been studied to realize large-scale SERS-active platforms. Here, we report the facile, efficient, and low-cost fabrication of stable and reproducible Au-coated electrosprayed organic semiconductor films (Au@BDY-4T-BDY) on flexible regular aluminum foil at a large scale (5 cm × 5 cm) for practical SERS and catalytic applications. To this end, a well-designed acceptor-donor-acceptor-type solution-processable molecular semiconductor, BDY-4T-BDY, developed by our group, is used because of its advantageous structural and electrical properties. The morphology of the electrosprayed organic film changes by solution concentration, and two different 3D morphologies with out-of-plane features are obtained. Highly uniform dendritic nanoribbons with sharp needle-like tips and vertically oriented nanoplates (∼50 nm thickness) are achieved when electrospraying solution concentrations of 240 and 253% w/v (mg/mL) are, respectively, used. When these electrosprayed organic films are coated with a nanoscopic thin (30 nm) Au layer, the resulting Au@BDY-4T-BDY platforms demonstrate remarkable SERS enhancement factors up to 1.7 × 106 with excellent Raman signal reproducibility (relative standard deviation ≤ 0.13) for methylene blue over the entire film. Finally, Au@BDY-4T-BDY films showed good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol with rate constants of 1.3 × 10-2 and 9.2 × 10-3 min-1. Our results suggest that electrospraying of rationally designed organic semiconductor molecules on flexible substrates holds great promise to enable low-cost, solution-processed, SERS-active platforms.

14.
Chem Commun (Camb) ; 53(12): 2028-2031, 2017 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-28124040

RESUMO

Bridging ligand replacement in zeolitic imidazolate frameworks, ZIF-8 and ZIF-67, by 1,2,3-triazole was investigated. A complete substitution of 2-methylimidazole by 1,2,3-triazole resulted in a topological transformation of the parent framework from a sodalite (SOD) network to a diamond (DIA) network.

15.
Chemphyschem ; 18(7): 850-861, 2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28097755

RESUMO

A new solution-processable and air-stable liquid-crystalline n-channel organic semiconductor (2,2'-(2,8-bis(5-(2-octyldodecyl)thiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile, α,ω-2OD-TIFDMT) with donor-acceptor-donor (D-A-D) π conjugation has been designed, synthesized, and fully characterized. The new semiconductor exhibits a low LUMO energy (-4.19 eV) and a narrow optical bandgap (1.35 eV). The typical pseudo-focal-conic fan-shaped texture of a hexagonal columnar liquid-crystalline (LC) phase was observed over a wide temperature range. The spin-coated semiconductor thin films show the formation of large (≈0.5-1 µm) and highly crystalline platelike grains with edge-on molecular orientations. Low-temperature-annealed (50 °C) top-contact/bottom-gate OFETs have provided good electron mobility values as high as 0.11 cm2 (V s)-1 and high Ion /Ioff ratios of 107 to 108 with excellent ambient stability. This indicates an enhancement of two orders of magnitude (100×) when compared with the ß-substituted parent semiconductor, ß-DD-TIFDMT (2,2'-(2,8-bis(3-dodecylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile). The current rational alkyl-chain engineering route offers great advantages for D-A-D π-core coplanarity in addition to maintaining good solubility in organic solvents, and leads to favorable optoelectronic/physicochemical characteristics. These remarkable findings demonstrate that α,ω-2OD-TIFDMT is a promising semiconductor material for the development of n-channel OFETs on flexible plastic substrates and LC-state annealing of the columnar liquid crystals can lower the electron mobility for transistor-type charge transport.

16.
ACS Appl Mater Interfaces ; 8(22): 14077-87, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27182606

RESUMO

Electron-deficient π-conjugated small molecules can function as electron-transporting semiconductors in various optoelectronic applications. Despite their unique structural, optical, and electronic properties, the development of BODIPY-based organic semiconductors has lagged behind that of other π-deficient units. Here, we report the design and synthesis of two novel solution-proccessable BODIPY-based small molecules (BDY-3T-BDY and BDY-4T-BDY) for organic thin-film transistors (OTFTs). The new semiconductors were fully characterized by (1)H/(13)C NMR, mass spectrometry, cyclic voltammetry, UV-vis spectroscopy, photoluminescence, differential scanning calorimetry, and thermogravimetric analysis. The single-crystal X-ray diffraction (XRD) characterization of a key intermediate reveals crucial structural properties. Solution-sheared top-contact/bottom-gate OTFTs exhibited electron mobilities up to 0.01 cm(2)/V·s and current on/off ratios of >10(8). Film microstructural and morphological characterizations indicate the formation of relatively long (∼0.1 mm) and micrometer-sized (1-2 µm) crystalline fibers for BDY-4T-BDY-based films along the shearing direction. Fiber-alignment-induced charge-transport anisotropy (µâˆ¥/µâŠ¥ ≈ 10) was observed, and higher mobilities were achieved when the microfibers were aligned along the conduction channel, which allows for efficient long-range charge-transport between source and drain electrodes. These OTFT performances are the highest reported to date for a BODIPY-based molecular semiconductor, and demonstrate that BODIPY is a promising building block for enabling solution-processed, electron-transporting semiconductor films.

17.
Adv Mater ; 26(44): 7438-43, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25284119

RESUMO

Ambipolar polymeric field-effect transistors can be programmed into a p- or n-type mode by using the remanent polarization of a ferroelectric gate insulator. Due to the remanent polarity, the device architecture is suited as a building block in complementary logic circuits and in CMOS-compatible memory cells for non-destructive read-out operations.

18.
Sci Rep ; 3: 2306, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23892593

RESUMO

A solvent-free fabrication of TiO2 and ZnO nanonetworks is demonstrated by using supramolecular nanotemplates with high coating conformity, uniformity, and atomic scale size control. Deposition of TiO2 and ZnO on three-dimensional nanofibrous network template is accomplished. Ultrafine control over nanotube diameter allows robust and systematic evaluation of the electrochemical properties of TiO2 and ZnO nanonetworks in terms of size-function relationship. We observe hypsochromic shift in UV absorbance maxima correlated with decrease in wall thickness of the nanotubes. Photocatalytic activities of anatase TiO2 and hexagonal wurtzite ZnO nanonetworks are found to be dependent on both the wall thickness and total surface area per unit of mass. Wall thickness has effect on photoexcitation properties of both TiO2 and ZnO due to band gap energies and total surface area per unit of mass. The present work is a successful example that concentrates on nanofabrication of intact three-dimensional semiconductor nanonetworks with controlled band gap energies.


Assuntos
Nanoestruturas/química , Titânio/química , Óxido de Zinco/química , Nanofibras/química , Nanofibras/ultraestrutura , Nanoestruturas/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Tamanho da Partícula , Peptídeos/química , Fotoquímica , Semicondutores
19.
Adv Mater ; 25(31): 4327-34, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23723092

RESUMO

The synthesis and physicochemical properties of a new class of BODIPY-based donor-acceptor π-conjugated polymers are presented. Solution-processed top-gate/bottom-contact (TG-BC) thin-film transistors on flexible plastic substrates exhibit air-stable p-channel activities with charge carrier mobilities as high as 0.17 cm(2) /V·s and current on/off ratios of 10(5) -10(6) , the highest reported to date for a BODIPY-based semiconductor. The results shown here indicate a significant charge-transport improvement (>10000×) in BODIPY-based polymeric semiconductors, demonstrating its potential in future organic optoelectronic applications.

20.
J Am Chem Soc ; 135(5): 1986-96, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23327660

RESUMO

Polymer semiconductors have received great attention for organic electronics due to the low fabrication cost offered by solution-based printing techniques. To enable the desired solubility/processability and carrier mobility, polymers are functionalized with hydrocarbon chains by strategically manipulating the alkylation patterns. Note that head-to-head (HH) linkages have traditionally been avoided because the induced backbone torsion leads to poor π-π overlap and amorphous film microstructures, and hence to low carrier mobilities. We report here the synthesis of a new building block for HH linkages, 4,4'-dialkoxy-5,5'-bithiazole (BTzOR), and its incorporation into polymers for high performance organic thin-film transistors. The small oxygen van der Waals radius and intramolecular S(thiazolyl)···O(alkoxy) attraction promote HH macromolecular architectures with extensive π-conjugation, low bandgaps (1.40-1.63 eV), and high crystallinity. In comparison to previously reported 3,3'-dialkoxy-2,2'-bithiophene (BTOR), BTzOR is a promising building block in view of thiazole geometric and electronic properties: (a) replacing (thiophene)C-H with (thiazole)N reduces steric encumbrance in -BTzOR-Ar- dyads by eliminating repulsive C-H···H-C interactions with neighboring arene units, thereby enhancing π-π overlap and film crystallinity; and (b) thiazole electron-deficiency compensates alkoxy electron-donating characteristics, thereby lowering the BTzOR polymer HOMO versus that of the BTOR analogues. Thus, the new BTzOR polymers show substantial hole mobilities (0.06-0.25 cm(2)/(V s)) in organic thin-film transistors, as well as enhanced I(on):I(off) ratios and greater ambient stability than the BTOR analogues. These geometric and electronic properties make BTzOR a promising building block for new classes of polymer semiconductors, and the synthetic route to BTzOR reported here should be adaptable to many other bithiazole-based building blocks.


Assuntos
Polímeros/química , Semicondutores , Tiazóis/química , Alquilação , Estrutura Molecular , Polímeros/síntese química , Teoria Quântica , Solubilidade , Tiazóis/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...