Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 154(9): 1820-1830, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23748116

RESUMO

The natural hormone uroguanylin regulates intestinal fluid homeostasis and bowel function through activation of guanylate cyclase-C (GC-C), resulting in increased intracellular cyclic guanosine-3',5'-monophosphate (cGMP). We report the effects of uroguanylin-mediated activation of the GC-C/cGMP pathway in vitro on extracellular cGMP transport and in vivo in rat models of inflammation- and stress-induced visceral hypersensitivity. In vitro exposure of intestinal Caco-2 cells to uroguanylin stimulated bidirectional, active extracellular transport of cGMP into luminal and basolateral spaces. cGMP transport was significantly and concentration dependently decreased by probenecid, an inhibitor of cGMP efflux pumps. In ex vivo Ussing chamber assays, uroguanylin stimulated cGMP secretion from the basolateral side of rat colonic epithelium into the submucosal space. In a rat model of trinitrobenzene sulfonic acid (TNBS)-induced visceral hypersensitivity, orally administered uroguanylin increased colonic thresholds required to elicit abdominal contractions in response to colorectal distension (CRD). Oral administration of cGMP mimicked the antihyperalgesic effects of uroguanylin, significantly decreasing TNBS- and restraint stress-induced visceromotor response to graded CRD in rats. The antihyperalgesic effects of cGMP were not associated with increased colonic spasmolytic activity, but were linked to significantly decreased firing rates of TNBS-sensitized colonic afferents in rats in response to mechanical stimuli. In conclusion, these data suggest that the continuous activation of the GC-C/cGMP pathway along the intestinal tract by the endogenous hormones guanylin and uroguanylin results in significant reduction of gastrointestinal pain. Extracellular cGMP produced on activation of GC-C is the primary mediator in this process via modulation of sensory afferent activity.


Assuntos
Guanilato Ciclase/metabolismo , Peptídeos Natriuréticos/metabolismo , Transdução de Sinais/fisiologia , Dor Visceral/metabolismo , Acetilcolina/farmacologia , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Adenocarcinoma/patologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/complicações , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias Colorretais/patologia , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Interações Medicamentosas , Estimulação Elétrica , Feminino , Gastroenteropatias/complicações , Gastroenteropatias/etiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hiperalgesia/fisiopatologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/fisiologia , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/metabolismo , Morfina/uso terapêutico , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Peptídeos Natriuréticos/uso terapêutico , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Peroxidase/metabolismo , RNA Mensageiro , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Restrição Física , Ácido Trinitrobenzenossulfônico/toxicidade , Dor Visceral/tratamento farmacológico , Dor Visceral/etiologia
2.
PLoS One ; 8(2): e56886, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23441224

RESUMO

Paclitaxel (Pac) is an antitumor agent that is widely used for treatment of solid cancers. While being effective as a chemotherapeutic agent, Pac in high doses is neurotoxic, specifically targeting sensory innervations. In view of these toxic effects associated with conventional chemotherapy, decreasing the dose of Pac has been recently suggested as an alternative approach, which might limit neurotoxicity and immunosuppression. However, it remains unclear if low doses of Pac retain its neurotoxic properties or might exhibit unusual effects on neuronal cells. The goal of this study was to analyze the concentration-dependent effect of Pac on isolated and cultured DRG neuronal cells from wild-type and TLR4 knockout mice. Three different morphological parameters were analyzed: the number of neurons which developed neurites, the number of neurites per cell and the total length of neurites per cell. Our data demonstrate that low concentrations of Pac (0.1 nM and 0.5 nM) do not influence the neuronal growth in cultures in both wild type and TLR4 knockout mice. Higher concentrations of Pac (1-100 nM) had a significant effect on DRG neurons from wild type mice, affecting the number of neurons which developed neurites, number of neurites per cell, and the length of neurites. In DRG from TLR4 knockout mice high concentrations of Pac showed a similar effect on the number of neurons which developed neurites and the length of neurites. At the same time, the number of neurites per cell, indicating the process of growth cone initiation, was not affected by high concentrations of Pac. Thus, our data showed that Pac in high concentrations has a significant damaging effect on axonal growth and that this effect is partially mediated through TLR4 pathways. Low doses of Pac are devoid of neuronal toxicity and thus can be safely used in a chemomodulation mode.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Paclitaxel/farmacologia , Receptor 4 Toll-Like/metabolismo , Animais , Antineoplásicos Fitogênicos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Knockout , Neurônios/patologia , Paclitaxel/toxicidade , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/genética
3.
Neurourol Urodyn ; 29(1): 77-81, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20025032

RESUMO

The coordination of pelvic physiologic function requires complex integrative sensory pathways that may converge both peripherally and/or centrally. Following a focal, acute irritative or infectious pelvic insult, these same afferent pathways may produce generalized pelvic sensitization or cross-sensitization as we show bi-directionally for the bladder and bowel in an animal model. Single unit bladder afferent recordings following intracolonic irritation reveal direct sensitization to both chemical and mechanical stimuli that's dependent upon both intact bladder sensory (C-fiber) innervation and neuropeptide content. Concurrent mastocytosis (preponderantly neurogenic) likely plays a role in long-term pelvic organ sensitization via the release of nociceptive and afferent-modulating molecules. Prolonged pelvic sensitization as mediated by these convergent and antidromic reflexive pathway may likewise lead to chronic pelvic pain and thus the overlap of chronic pelvic pain disorders.


Assuntos
Vias Aferentes/fisiopatologia , Colo/inervação , Cistite Intersticial/fisiopatologia , Neurônios Aferentes/metabolismo , Dor Pélvica/fisiopatologia , Bexiga Urinária/inervação , Potenciais de Ação , Vias Aferentes/imunologia , Vias Aferentes/metabolismo , Animais , Doença Crônica , Cistite Intersticial/imunologia , Cistite Intersticial/metabolismo , Modelos Animais de Doenças , Humanos , Mastócitos/imunologia , Mecanotransdução Celular , Fibras Nervosas Amielínicas/metabolismo , Neurônios Aferentes/imunologia , Neuropeptídeos , Dor Pélvica/imunologia , Dor Pélvica/metabolismo , Sensação
4.
Neurourol Urodyn ; 26(6): 887-93, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17385238

RESUMO

AIMS: Chronic pelvic pain disorders often overlap. We have shown that acute colonic irritation can produce acute irritative micturition patterns and acutely sensitize bladder afferent responses to mechanical and chemical stimuli. We hypothesize that with time, colonic irritation can lead to neurogenic changes in the bladder and the development of chronic bladder sensitization. METHODS: Micturition patterns were measured in rats 60-90 days after the induction of trinitrobenzenesulfonic acid (TNBS) colitis in the resolution phase of this model. Total and activated mast cells (MCs) were quantified in the bladder, while mRNA levels of stem cell factor (SCF; a.k.a. MC growth factor) and nerve growth factor (NGF; a MC and nociceptive C-fiber stimulator) were quantified in the bladder and L6-S1 dorsal root ganglia (DRG). RESULTS: Following intra-rectal TNBS, voiding volume was reduced (P < 0.005), while voiding frequency was increased (P < 0.05), both by approximately 50%. Furthermore, both the percentage and density of activated bladder MCs were significantly elevated (P < 0.05), although total MC counts were not statistically increased. At the molecular level, urinary bladder SCF expression increased twofold (P < 0.005), as did NGF (P < 0.01), while L6-S1 DRG levels were not significantly elevated. CONCLUSIONS: Chronic cystitis in the rat as evidenced by changes in micturition patterns and the recruitment of activated MCs can occur during the resolution phase of TNBS colitis. These changes, of which MCs may play an important role, appear to be maintained over time and may occur via stimulation of convergent pelvic afferent input resulting in the upregulation of neurotrophic factors in the target organ.


Assuntos
Colite/fisiopatologia , Mastócitos/fisiologia , Fator de Células-Tronco/genética , Ácido Trinitrobenzenossulfônico , Micção/fisiologia , Animais , Colite/induzido quimicamente , Colite/genética , Modelos Animais de Doenças , Feminino , Mastócitos/efeitos dos fármacos , Fatores de Crescimento Neural/genética , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley , Ácido Trinitrobenzenossulfônico/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiologia , Bexiga Urinária/fisiopatologia
5.
Am J Physiol Renal Physiol ; 292(1): F123-30, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16926445

RESUMO

Irritable bowel syndrome and interstitial cystitis frequently overlap. We have shown that acute colitis sensitizes urinary bladder afferents to both mechanical and chemical stimuli and that chronic colitis similarly produces neurogenic cystitis. We hypothesize that chronic irritation of the colon releases neuropeptides from bladder afferents, leading to receptor sensitization and neurogenic inflammation. Female Sprague-Dawley rats received intrarectal trinitrobenzenesulfonic acid (TNBS) or vehicle 3 days following either systemic capsaicin (CP) pretreatment or vehicle. Ten days later, action potentials of single-unit pelvic C-fiber afferents with receptive fields in the bladder were recorded under urethane anesthesia during graded bladder distensions (UBD) or intravesical capsaicin (vCP) administration. In controls, UBD increased bladder afferent firing in proportion to intravesical pressure. At intravesical pressures of 30 mmHg and above, the percent increase in afferent firing was significantly accentuated following TNBS compared with controls (1,222 +/- 176 vs. 624 +/- 54%, P < 0.01). The response to vCP was also enhanced (4,126 +/- 775 vs. 1,979 +/- 438%, P < 0.01). Systemic depletion of neuropeptides from sensory nerves abolished these effects. Histological examination of the bladders revealed an increase in mast cell density in TNBS-treated animals compared with controls (18.02 +/- 1.25 vs. 3.11 +/- 0.27 mast cells/x100 field, P < 0.01). This effect was significantly ameliorated with CP (10.25 +/- 0.95, P < 0.5 vs. TNBS-treated animals). In summary, chronic colonic irritation in the rat sensitizes urinary bladder afferents to noxious stimuli and causes mast cell infiltration in the bladder. Depletion of neuropeptides from sensory afferents diminishes these effects, suggesting they play an important role.


Assuntos
Colite/patologia , Cistite Intersticial/patologia , Mastócitos/fisiologia , Neurônios Aferentes/fisiologia , Neuropeptídeos/fisiologia , Bexiga Urinária/patologia , Anestesia , Anestésicos Intravenosos , Animais , Bradicinina , Capsaicina , Doença Crônica , Colite/induzido quimicamente , Feminino , Mastócitos/patologia , Terminações Nervosas/efeitos dos fármacos , Fibras Nervosas Amielínicas/fisiologia , Pelve/inervação , Estimulação Física , Ratos , Ratos Sprague-Dawley , Substância P , Ácido Trinitrobenzenossulfônico , Uretana , Bexiga Urinária/inervação
6.
Pain ; 128(3): 235-243, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17070995

RESUMO

Dichotomizing afferents are individual dorsal root ganglion (DRG) neurons that innervate two distinct structures thereby providing a form of afferent convergence that may be involved in pelvic organ cross-sensitization. To determine the distribution of dichotomizing afferents supplying the distal colon and bladder of the Sprague-Dawley rat and the C57Bl/6 mouse, we performed concurrent retrograde labeling of urinary bladder and distal colon afferents using cholera toxin subunit B (CTB) fluorescent conjugates. Animals were perfused 4-5 days after sub-serosal organ injections, and the T10-S2 DRG were removed, sectioned, and analyzed using confocal microscopy. In the rat, CTB-positive afferents retrogradely labeled from the bladder were nearly three times more numerous than those labeled from the distal colon, while in the mouse, each organ was equally represented. In both species, the majority of colon and bladder afferents projected from lumbosacral (LS) ganglia and secondarily from thoracolumbar (TL) ganglia. In the rat, 17% of the total CTB-positive neurons were retrogradely labeled from both organs with 11% localized in TL, 6% in LS, and 0.8% in thoracic (TH) ganglia. In the mouse, 21% of the total CTB-positive neurons were dually-labeled with 12% localized in LS, 4% in TH, and 4% in TL ganglia. These findings support the existence of dichotomizing pelvic afferents, which provide a pre-existing neuronal substrate for possible immediate and maintained pelvic organ cross-sensitization and ultimately may play a role in the overlap of pelvic pain disorders.


Assuntos
Vias Aferentes/citologia , Colo/inervação , Neurônios Aferentes/citologia , Bexiga Urinária/inervação , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Especificidade da Espécie
7.
Am J Physiol Renal Physiol ; 290(6): F1478-87, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16403832

RESUMO

Chronic pelvic pain (CPP) disorders frequently overlap. We have demonstrated that acute and chronic colonic irritation can lead to neurogenic cystitis. We hypothesize that acute colonic irritation can sensitize urinary bladder afferents to mechanical and chemical stimuli. Single-unit afferent activity was recorded from fine filaments of the pelvic nerve in urethane-anesthetized Sprague-Dawley female rats before and 1 h after intracolonic administration of trinitrobenzenesulfonic acid (TNBS). Only spontaneously active afferents with receptive fields in the bladder and conduction velocities <2.5 m/s (unmyelinated C-fibers) were studied. Mechanical sensitivity was tested by bladder distension (BD) during saline infusion, whereas chemical sensitivity was tested with intravesical capsaicin, bradykinin, or substance P. Colonic irritation increased the resting firing rate of bladder afferents twofold (1.0 +/- 0.2 vs. 0.49 +/- 0.2 impulses/s, P < 0.05). Moreover, at low-pressure BDs (10-20 mmHg), a greater percentage of afferents exhibited increased activity following TNBS (73 vs. 27%, P < 0.05). Although the magnitude of the afferent response to BD was unchanged at low pressures, the response was greatly enhanced at pressures 30 mmHg and above (2.36 +/- 0.56 vs. 8.55 +/- 0.73 impulses/s, P < 0.05). Responses to capsaicin, bradykinin, and substance P were also significantly enhanced following TNBS, and all responses were blocked by bladder denervation. In rats, colonic irritation sensitizes urinary bladder afferents to noxious mechanical and chemical stimuli. Interruption of the neural input to the bladder minimized this effect, suggesting a local afferent pathway from the colon. Thus, the overlap of CPP disorders may be a consequence of pelvic afferent cross-sensitization.


Assuntos
Vias Aferentes/fisiopatologia , Doenças do Colo/fisiopatologia , Pelve/inervação , Bexiga Urinária/inervação , Potenciais de Ação , Vias Aferentes/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Bradicinina/farmacologia , Capsaicina/farmacologia , Colo/efeitos dos fármacos , Denervação , Feminino , Estimulação Física , Ratos , Ratos Sprague-Dawley , Substância P/farmacologia , Ácido Trinitrobenzenossulfônico/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia
8.
Am J Physiol Cell Physiol ; 283(6): C1745-51, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12388068

RESUMO

The hyperpermeability response of microvessels in inflammation involves complex signaling reactions and structural modifications in the endothelium. Our goal was to determine the role of Src-family kinases (Src) in neutrophil-mediated venular hyperpermeability and possible interactions between Src and endothelial barrier components. We found that inhibition of Src abolished the increases in albumin permeability caused by C5a-activated neutrophils in intact, perfused coronary venules, as well as in cultured endothelial monolayers. Activated neutrophils increased Src phosphorylation at Tyr416, which is located in the catalytic domain, and decreased phosphorylation at Tyr527 near the carboxyl terminus, events consistent with reports that phosphorylating and transforming activities of Src are upregulated by Tyr416 phosphorylation and negatively regulated by Tyr527 phosphorylation. Furthermore, neutrophil stimulation resulted in association of Src with the endothelial junction protein beta-catenin and beta-catenin tyrosine phosphorylation. These phenomena were abolished by blockage of Src activity. Taken together, our studies link for the first time neutrophil-induced hyperpermeability to a pathway involving Src kinase activation, Src/beta-catenin association, and beta-catenin tyrosine phosphorylation in the microvascular endothelium.


Assuntos
Permeabilidade Capilar/fisiologia , Proteínas do Citoesqueleto/metabolismo , Neutrófilos/fisiologia , Transativadores/metabolismo , Quinases da Família src/fisiologia , Animais , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Ativação Enzimática/fisiologia , Humanos , Fosforilação , Suínos , Tirosina/metabolismo , beta Catenina
9.
Circ Res ; 90(11): 1214-21, 2002 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-12065325

RESUMO

Neutrophil-induced coronary microvascular leakage represents an important pathophysiological consequence of ischemic and inflammatory heart diseases. The precise mechanism by which neutrophils regulate endothelial barrier function remains to be established. The aim of this study was to examine the microvascular endothelial response to neutrophil activation with a focus on myosin light chain kinase (MLCK)-mediated myosin light chain (MLC) phosphorylation, a regulatory process that controls cell contraction. The apparent permeability coefficient of albumin (Pa) was measured in intact isolated porcine coronary venules. Incubation of the vessels with C5a-activated neutrophils induced a time- and concentration-dependent increase in Pa. The hyperpermeability response was significantly attenuated during inhibition of endothelial MLC phosphorylation with the selective MLCK inhibitor ML-7 and transfection of a specific MLCK-inhibiting peptide. In contrast, transfection of constitutively active MLCK elevated Pa, which was abolished by ML-7. In addition to the vessel study, albumin transendothelial flux was measured in cultured bovine coronary venular endothelial monolayers, which displayed a hyperpermeability response to neutrophils and MLCK in a pattern similar to that in venules. Importantly, neutrophil stimulation caused MLC phosphorylation in endothelial cells in a time course closely correlated with that of the hyperpermeability response. Consistently, the MLCK inhibitors abolished neutrophil-induced MLC phosphorylation. Furthermore, immunohistochemical observation of neutrophil-stimulated endothelial cells revealed an increased staining for phosphorylated MLC in association with contractile stress fiber formation and intercellular gap development. Taken together, the results suggest that endothelial MLCK activation and MLC phosphorylation play an important role in mediating endothelial barrier dysfunction during neutrophil activation.


Assuntos
Permeabilidade Capilar/fisiologia , Vasos Coronários/fisiologia , Cadeias Leves de Miosina/metabolismo , Neutrófilos/fisiologia , Animais , Azepinas/farmacologia , Permeabilidade Capilar/efeitos dos fármacos , Bovinos , Células Cultivadas , Complemento C5a/farmacologia , Relação Dose-Resposta a Droga , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Naftalenos/farmacologia , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Suínos , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...