Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glycobiology ; 18(10): 779-88, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18621993

RESUMO

To control interspecies transmission of influenza viruses, it is essential to elucidate the molecular mechanisms of the interaction of influenza viruses with sialo-glycoconjugate receptors expressed on different host cells. Competitive inhibitors containing mimetic receptor carbohydrates that prevent virus entry may be useful tools to address such issues. We chemoenzymatically synthesized and characterized the glycopolymers that were carrying terminal 2,6-sialic acid on lactosamine repeats as influenza virus inhibitors. In vitro and in vivo infection experiments using these glycopolymers demonstrated marked differences in inhibitory activity against different species of viruses. Human viruses, including clinically isolated strains, were consistently inhibited by glycopolymers carrying lactosamine repeats with higher activity than those containing a single lactosamine. A swine virus also showed the same recognition properties as those from human hosts. In contrast, avian and equine viruses were not inhibited by any of the glycopolymers examined carrying single, tandem, or triplet lactosamine repeats. Hemagglutination inhibition and solid-phase binding analyses indicated that binding affinity of glycopolymers with influenza viruses contributes dominantly to the inhibitory activity against viral infection. Sequence analysis and molecular modeling of human viruses indicated that specific amino acid substitutions on hemagglutinin may affect binding affinity of glycopolymers carrying lactosamine repeats with viruses. In conclusion, glycopolymers carrying lactosamine repeats of different lengths are useful to define molecular mechanisms of virus recognition. The core carbohydrate portion as well as sialyl linkages on the receptor glycoconjugate may affect host cell recognition of human and swine viruses.


Assuntos
Amino Açúcares/síntese química , Amino Açúcares/metabolismo , Antivirais/síntese química , Antivirais/metabolismo , Influenza Humana/tratamento farmacológico , Internalização do Vírus/efeitos dos fármacos , Amino Açúcares/química , Animais , Antivirais/química , Antivirais/farmacologia , Biopolímeros/química , Biopolímeros/metabolismo , Biopolímeros/farmacologia , Metabolismo dos Carboidratos , Carboidratos/química , Linhagem Celular , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular
2.
Biol Pharm Bull ; 30(9): 1697-701, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17827723

RESUMO

Shiga toxin (Stx) exerts toxic activity by binding to glycosphingolipids, mainly globotriaosyl (Gb(3)) ceramide, on the surface of target cells. The inhibition of toxin-receptor binding is a promising therapeutic approach to prevent Stx-mediated diseases. In this study, we synthesized monovalent Stx-ligands of phosphatidylethanolamine dipalmitoyl-Gb(3) (Gb(3)-PEDP) and galabiosyl (Gb(2))-PEDP and we examined their neutralizing activity against Stx-1 and Stx-2 in vitro. Both Gb(3)-PEDP and Gb(2)-PEDP strongly neutralized the cytotoxicity of Stx-1 and Stx-2. It is likely that the mechanism of neutralization involved formation of liposomes and consequently clustering of sugar units. We propose monovalent Gb(3)-/Gb(2)-derivatives conjugated with phosphatidyl residue as a novel class of Stx-neutralizing agent.


Assuntos
Globosídeos/farmacologia , Fosfolipídeos/química , Toxina Shiga/antagonistas & inibidores , Triexosilceramidas/farmacologia , Sequência de Carboidratos , Escherichia coli/química , Escherichia coli/metabolismo , Globosídeos/síntese química , Células HeLa , Humanos , Lipossomos/química , Dados de Sequência Molecular , Toxina Shiga/toxicidade , Toxina Shiga I/antagonistas & inibidores , Toxina Shiga I/toxicidade , Toxina Shiga II/antagonistas & inibidores , Toxina Shiga II/toxicidade , Triexosilceramidas/síntese química
3.
Nature ; 444(7117): 378-82, 2006 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-17108965

RESUMO

H5N1 influenza A viruses have spread to numerous countries in Asia, Europe and Africa, infecting not only large numbers of poultry, but also an increasing number of humans, often with lethal effects. Human and avian influenza A viruses differ in their recognition of host cell receptors: the former preferentially recognize receptors with saccharides terminating in sialic acid-alpha2,6-galactose (SAalpha2,6Gal), whereas the latter prefer those ending in SAalpha2,3Gal (refs 3-6). A conversion from SAalpha2,3Gal to SAalpha2,6Gal recognition is thought to be one of the changes that must occur before avian influenza viruses can replicate efficiently in humans and acquire the potential to cause a pandemic. By identifying mutations in the receptor-binding haemagglutinin (HA) molecule that would enable avian H5N1 viruses to recognize human-type host cell receptors, it may be possible to predict (and thus to increase preparedness for) the emergence of pandemic viruses. Here we show that some H5N1 viruses isolated from humans can bind to both human and avian receptors, in contrast to those isolated from chickens and ducks, which recognize the avian receptors exclusively. Mutations at positions 182 and 192 independently convert the HAs of H5N1 viruses known to recognize the avian receptor to ones that recognize the human receptor. Analysis of the crystal structure of the HA from an H5N1 virus used in our genetic experiments shows that the locations of these amino acids in the HA molecule are compatible with an effect on receptor binding. The amino acid changes that we identify might serve as molecular markers for assessing the pandemic potential of H5N1 field isolates.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/metabolismo , Mutação/genética , Receptores Virais/metabolismo , Animais , Linhagem Celular , Cristalografia por Raios X , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Virus da Influenza A Subtipo H5N1/química , Aves Domésticas , Receptores Virais/química
4.
Glycoconj J ; 22(1-2): 1-11, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15864429

RESUMO

A soluble and active form of recombinant human ST6Gal I was expressed in Escherichia coli. The gene encoding the soluble form of ST6Gal I lacking the membrane and cytosolic regions was introduced into a bacterial expression vector, pMAL-p2X, fused in frame with a maltose-binding protein (MBP) tag. Low-temperature cultivation at 13 degrees C during IPTG-induction significantly improved both solubility and MBP-tagging of the recombinant enzyme expressed in bacteria. The supernatant prepared by disruption of the cells demonstrated sialic acid transfer activity to both an oligosaccharide and a glycoprotein, asialofetuin, indicating that the enzyme expressed in bacteria is soluble and active. The MBP-tagged enzyme was efficiently purified by a combination of cation-exchange column and amylase-conjugated agarose column chromatography. The purified recombinant enzyme exerted enzymatic activity even in the absence of detergents in the reaction mixture. Acceptor substrate specificity of the enzyme was marginally different from that of rat liver ST6Gal I. These observations suggest that membrane and cytosolic regions of ST6Gal I may affect the properties of the enzyme. The purified recombinant enzyme was applied to convert desialylated fetuin to resialylated fetuin. Lectin blotting demonstrated that resialylated fetuin possesses a single Neu5Ac alpha 2-6 residue. The resialylated fetuin efficiently blocked hemagglutination induced by influenza virus strain A/Memphis/1/71 (H3N2), indicating that resialylated carbohydrate chains on the protein are so active as to competitively inhibit virus-receptor interaction. In conclusion, soluble recombinant ST6Gal I obtained using our bacterial expression system is a valuable tool to investigate the molecular mechanisms of biological and pathological interactions mediated via carbohydrates.


Assuntos
Escherichia coli/metabolismo , Proteínas Recombinantes de Fusão/química , Sialiltransferases/química , Animais , Sequência de Carboidratos , Proteínas de Transporte/genética , Clonagem Molecular , Hemaglutinação , Humanos , Vírus da Influenza A/efeitos dos fármacos , Proteínas Ligantes de Maltose , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/química , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Sialiltransferases/genética , Sialiltransferases/isolamento & purificação , Solubilidade , alfa-Fetoproteínas/química , alfa-Fetoproteínas/farmacologia , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...