Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 75(15): 4494-4511, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38329465

RESUMO

During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.


Assuntos
Oxirredução , Espécies Reativas de Oxigênio , Estresse Fisiológico , Espécies Reativas de Oxigênio/metabolismo , Aclimatação , Plantas/metabolismo , Fenômenos Fisiológicos Vegetais
2.
Polymers (Basel) ; 14(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35890602

RESUMO

While fused deposition modeling (FDM) and other relatively inexpensive 3D printing methods are nowadays used in many applications, the possible areas of using FDM-printed objects are still limited due to mechanical and thermal constraints. Applications for space, e.g., for microsatellites, are restricted by the usually insufficient heat resistance of the typical FDM printing materials. Printing high-temperature polymers, on the other hand, necessitates special FDM printers, which are not always available. Here, we show investigations of common polymers, processible on low-cost FDM printers, under elevated temperatures of up to 160 °C for single treatments. The polymers with the highest dimensional stability and mechanical properties after different temperature treatments were periodically heat-treated between -40 °C and +80 °C in cycles of 90 min, similar to the temperature cycles a microsatellite in the low Earth orbit (LEO) experiences. While none of the materials under investigation fully maintains its dimensions and mechanical properties, filled poly(lactic acid) (PLA) filaments were found most suitable for applications under these thermal conditions.

3.
Oecologia ; 187(1): 75-84, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29525905

RESUMO

Investigations of the interplay of organisms in an ecological community are a prerequisite to understanding the processes that shape the structures of those communities. Among several types of interactions, interest in the positive interactions of species that compete for the same resource has grown, as they may provide a mechanism enabling coexistence. In the laboratory experiment described herein, the effects of interspecific interaction on the population growth of two bacterial-feeding nematode species, Panagrolaimus cf. thienemanni and Poikilolaimus cf. regenfussi, were investigated. Specifically, we asked: (1) whether there is an interspecific interaction between organisms competing for a mutual resource and (2) whether these interactions are altered by the competitors' initial densities and (3) their variable growth rates (induced by different food supplies). Each treatment initially contained 48 nematode individuals, but at different species ratios (48:0; 32:16; 24:24; 16:32; 0:48). The populations were provided with three different bacterial densities (108, 109, and 1010 cells ml-1) as food. The data were analyzed using a generalized linear mixed model. The best-fitting model revealed a significant decline in population growth rates with an increasing species ratio, but depending on the food density and species. These results provide strong evidence for positive interspecific interactions that vary with both species density and food-supply level. They also suggest important roles for positive interspecific interactions in habitat colonization and in maintaining the coexistence of species in the same trophic group.


Assuntos
Nematoides , Crescimento Demográfico , Animais , Ecossistema , Humanos , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA