Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 9(1): 126, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31407106

RESUMO

Heterologous protein production is widely used in industrial biotechnology. However, using non-native production hosts can lead to enzymes with altered post-translational modifications, such as glycosylation. We have investigated how production in a non-native host affects the physicochemical properties and enzymatic activity of a feruloyl esterase from Myceliophthora thermophila, MtFae1a. The enzyme was produced in two microorganisms that introduce glycosylation (M. thermophila and Pichia pastoris) and in Escherichia coli (non-glycosylated). Mass spectrometric analysis confirmed the presence of glycosylation and revealed differences in the lengths of glycan chains between the enzymes produced in M. thermophila and P. pastoris. The melting temperature and the optimal temperature for activity of the non-glycosylated enzyme were considerably lower than those of the glycosylated enzymes. The three MtFae1a versions also exhibited differences in specific activity and specificity. The catalytic efficiency of the glycosylated enzymes were more than 10 times higher than that of the non-glycosylated one. In biotechnology, immobilization is often used to allow reusing enzyme and was investigated on mesoporous silica particles. We found the binding kinetics and immobilization yield differed between the enzyme versions. The largest differences were observed when comparing enzymes with and without glycosylation, but significant variations were also observed between the two differently glycosylated enzymes. We conclude that the biotechnological value of an enzyme can be optimized for a specific application by carefully selecting the production host.

2.
Microb Cell Fact ; 17(1): 112, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30005638

RESUMO

BACKGROUND: The yeast Komagataella phaffii, better known as Pichia pastoris, is a commonly used host for recombinant protein production. Here expression vectors are reported that address the different steps of the transcription-translation-secretion pathway of heterologous protein production. RESULTS: Transcription and translation enhancing elements were introduced in an expression cassette for the production of recombinant Aspergillus niger feruloyl esterase A. The yield was increased by threefold as compared to the yield without these elements. Multiple copy strains were selected using a zeocin resistance marker in the expression cassette and showed another sixfold higher yield. Modification of the C-terminal amino acid sequence of the secretion signal did not significantly improve the production yield. Similar data were obtained for the production of another protein, recombinant human interleukin 8. Upscaling to fed-batch fermentation conditions resulted in a twofold increase for reference strains, while for strains with enhancing elements a tenfold improvement was observed. CONCLUSIONS: Pichia pastoris is used for recombinant protein production in industrial fermentations. By addressing the transcription and translation of mRNA coding for recombinant protein, significant yield improvement was obtained. The yield improvement obtained under microscale conditions was maintained under fed-batch fermentation conditions. These data demonstrate the potential of these expression vectors for large scale application as improved production of proteins has major implications on the economics and sustainability of biocatalyst dependent production processes e.g. for the production of pharmaceuticals and for the bioconversions of complex molecules.


Assuntos
Metanol/farmacologia , Pichia/efeitos dos fármacos , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/genética , Pichia/genética , Proteínas Recombinantes/genética
3.
Appl Environ Microbiol ; 78(24): 8743-52, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042182

RESUMO

The gene xylB(ADP1) from Acinetobacter baylyi ADP1 (gene annotation number ACIAD1578), coding for a putative aryl alcohol dehydrogenase, was heterologously expressed in Escherichia coli BL21(DE3). The respective aryl alcohol dehydrogenase was purified by fast protein liquid chromatography to apparent electrophoretic homogeneity. The predicted molecular weight of 39,500 per subunit was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. According to the native M(w) as determined by gel filtration, the enzyme forms dimers and therefore seems to be XylB related. The enzyme showed the highest activity at 40°C. For both the reduction and the oxidation reactions, the pH for optimum activity was 6.5. The enzyme was NADH dependent and able to reduce medium- to long-chain n-alkylaldehydes, methyl-branched aldehydes, and aromatic aldehydes, with benzaldehyde yielding the highest activity. The oxidation reaction with the corresponding alcohols showed only 2.2% of the reduction activity, with coniferyl alcohol yielding the highest activity. Maximum activities for the reduction and the oxidation reaction were 104.5 and 2.3 U mg(-1) of protein, respectively. The enzyme activity was affected by low concentrations of Ag(+) and Hg(2+) and high concentrations of Cu(2+), Zn(2+), and Fe(2+). The gene xylB(ADP1) seems to be expressed constitutively and an involvement in coniferyl alcohol degradation is suggested. However, the enzyme is most probably not involved in the degradation of benzyl alcohol, anisalcohol, salicyl alcohol, vanillyl alcohol, cinnamyl alcohol, or aliphatic and isoprenoid alcohols.


Assuntos
Acinetobacter/enzimologia , Oxirredutases do Álcool/isolamento & purificação , Oxirredutases do Álcool/metabolismo , Coenzimas/metabolismo , NAD/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Cátions Bivalentes/metabolismo , Cromatografia Líquida , Escherichia coli/genética , Expressão Gênica , Concentração de Íons de Hidrogênio , Metais/metabolismo , Peso Molecular , Oxirredução , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Temperatura
4.
Microb Biotechnol ; 2(5): 551-65, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21255288

RESUMO

The global demand for crude oil is expected to continue to rise in future while simultaneously oil production is currently reaching its peak. Subsequently, rising oil prices and their negative impacts on economy, together with an increased environmental awareness of our society, directed the focus also on the biotechnological production of fuels. Although a wide variety of such fuels has been suggested, only the production of ethanol and biodiesel has reached a certain economic feasibility and volume, yet. This review focuses on the current state and perspectives of biotechnological production of biodiesel-like compounds. At present by far most of the produced biodiesel is obtained by chemical transesterification reactions, which cannot meet the demands of a totally 'green' fuel production. Therefore, also several biotechnological biodiesel production processes are currently being developed. Biotechnological production can be achieved by purified enzymes in the soluble state, which requires cost-intensive protein preparation. Alternatively, enzymes could be immobilized on an appropriate matrix, enabling a reuse of the enzyme, although the formation of by-products may provide difficulties to maintain the enzyme activity. Processes in presence of organic solvents like t-butanol have been developed, which enhance by-product solubility and therefore prevent loss of enzyme activity. As another approach the application of whole-cell catalysis for the production of fatty acid ethyl esters, which is also referred to as 'microdiesel', by recombinant microorganisms has recently been suggested.


Assuntos
Bactérias/enzimologia , Biocombustíveis , Biotecnologia/métodos , Fungos/enzimologia , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Solventes
5.
Appl Environ Microbiol ; 71(2): 790-6, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15691932

RESUMO

The bifunctional wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT) from Acinetobacter sp. strain ADP1 (formerly Acinetobacter calcoaceticus ADP1) mediating the biosyntheses of wax esters and triacylglycerols was used for the in vivo and in vitro biosynthesis of thio wax esters and dithio wax esters. For in vitro biosynthesis, 5'His(6)WS/DGAT comprising an N-terminal His(6) tag was purified from the soluble protein fraction of Escherichia coli Rosetta(DE3)pLysS (pET23a::5'His(6)atf). By employing SP-Sepharose high-pressure and Ni-nitrilotriacetic acid fast-protein liquid chromatographies, a 19-fold enrichment with a final specific activity of 165.2 nmol mg of protein(-1) min(-1) was achieved by using 1-hexadecanol and palmitoyl-CoA as substrates. Incubation of purified 5'His(6)WS/DGAT with 1-hexadecanethiol and palmitoyl-CoA as substrates resulted in the formation of palmitic acid hexadecyl thio ester (10.4% relative specific activity of a 1-hexadecanol control). Utilization of 1,8-octanedithiol and palmitoyl-CoA as substrates led to the formation of 1-S-monopalmitoyloctanedithiol and minor amounts of 1,8-S-dipalmitoyloctanedithiol (59.3% relative specific activity of a 1-hexadecanol control). The latter dithio wax ester was efficiently produced when 1-S-monopalmitoyloctanedithiol and palmitoyl-CoA were used as substrates (13.4% specific activity relative to that of a 1-hexadecanol control). For the in vivo biosynthesis of thio wax esters, the knockout mutant Acinetobacter sp. strain ADP1acr1OmegaKm, which is unable to produce fatty alcohols, was used. Cultivation of Acinetobacter sp. strain ADP1acr1OmegaKm in the presence of gluconate, 1-hexadecanethiol, and oleic acid in nitrogen-limited mineral salts medium resulted in the accumulation of unusual thio wax esters that accounted for around 1.19% (wt/wt) of the cellular dry weight and consisted mainly of oleic acid hexadecyl thioester as revealed by gas chromatography-mass spectrometry.


Assuntos
Acinetobacter/enzimologia , Aciltransferases/biossíntese , Ésteres/metabolismo , Acinetobacter/genética , Acinetobacter/crescimento & desenvolvimento , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Cromatografia Líquida de Alta Pressão , Meios de Cultura , Diacilglicerol O-Aciltransferase , Indústria Farmacêutica/métodos , Escherichia coli/enzimologia , Escherichia coli/genética , Ésteres/química , Cromatografia Gasosa-Espectrometria de Massas , Especificidade por Substrato , Compostos de Sulfidrila/metabolismo , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...