Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(24): 5478-5487.e5, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38065097

RESUMO

The ability to recognize others is a frequent assumption of models of the evolution of cooperation. At the same time, cooperative behavior has been proposed as a selective agent favoring the evolution of individual recognition abilities. Although theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities and cooperative behavior with evidence of selection are elusive. Here, we provide evidence of a selective link between individual recognition and cooperation in the paper wasp Polistes fuscatus through a combination of clinal, common garden, and population genomics analyses. We identified latitudinal clines in both rates of cooperative nesting and color pattern diversity, consistent with a selective link between recognition and cooperation. In behavioral experiments, we replicated previous results demonstrating individual recognition in cooperative and phenotypically diverse P. fuscatus from New York. In contrast, wasps from a less cooperative and phenotypically uniform Louisiana population showed no evidence of individual recognition. In a common garden experiment, groups of wasps from northern populations formed more stable and individually biased associations, indicating that recognition facilitates group stability. The strength of recent positive selection on cognition-associated loci likely to mediate individual recognition is substantially greater in northern compared with southern P. fuscatus populations. Collectively, these data suggest that individual recognition and cooperative nesting behavior have co-evolved in P. fuscatus because recognition helps stabilize social groups. This work provides evidence of a specific cognitive phenotype under selection because of social interactions, supporting the idea that social behavior can be a key driver of cognitive evolution.


Assuntos
Reconhecimento Psicológico , Vespas , Animais , Cognição , Comportamento Social , Fenótipo , Comportamento Cooperativo , Vespas/genética , Evolução Biológica
2.
Genome Biol Evol ; 14(8)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35880292

RESUMO

Paper wasps are a model system for the study of social evolution due to a high degree of inter- and intraspecific variation in cooperation, aggression, and visual signals of social status. Increasing the taxonomic coverage of genomic resources for this diverse clade will aid comparative genomic approaches for testing predictions about the molecular basis of social evolution. Here, we provide draft genome assemblies for two well-studied species of paper wasps, Polistes exclamans and Mischocyttarus mexicanus. The P. exclamans genome assembly is 221.5 Mb in length with a scaffold N50 of 4.11 Mb. The M. mexicanus genome assembly is 227 Mb in length with a scaffold N50 of 1.1 Mb. Genomes have low repeat content (9.54-10.75%) and low GC content (32.06-32.4%), typical of other social hymenopteran genomes. The DNA methyltransferase gene, Dnmt3 , was lost early in the evolution of Polistinae. We identified a second independent loss of Dnmt3 within hornets (genus: Vespa).


Assuntos
Vespas , Animais , Genoma , Guiné , Vespas/genética
3.
J Comp Neurol ; 530(4): 756-767, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34473851

RESUMO

Obligate insect social parasites evolve traits to effectively locate and then exploit their hosts, whereas hosts have complex social behavioral repertoires, which include sensory recognition to reject potential conspecific intruders and heterospecific parasites. While social parasites and host behaviors have been studied extensively, less is known about how their sensory systems function to meet their specific selective pressures. Here, we compare investment in visual and olfactory brain regions in the paper wasp Polistes dominula, and its obligate social parasite P. sulcifer, to explore the links among sensory systems,brain and behavior. Our results show significant relative volumetric differences between these two closely related species, consistent with their very different life histories. Social parasites show proportionally larger optic lobes and central complex to likely navigate long-distance migrations and unfamiliar landscapes to locate the specific species of hosts they usurp. Contrastingly, hosts have larger antennal lobes and calyces of the mushroom bodies compared with social parasites, as predicted by their sensory means to maintain social cohesion via olfactory signals, allocate colony tasks, forage, and recognize conspecific and heterospecific intruders. Our work suggests how this tradeoff between visual and olfactory brain regions may facilitate different sensory adaptations needed to perform social and foraging tasks by the host, including recognition of parasites, or to fly long distances and successful host localizing by the social parasite.


Assuntos
Córtex Olfatório , Parasitos , Vespas , Animais , Encéfalo , Interações Hospedeiro-Parasita , Comportamento Social
4.
PLoS Genet ; 17(9): e1009474, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34478434

RESUMO

Social interactions have large effects on individual physiology and fitness. In the immediate sense, social stimuli are often highly salient and engaging. Over longer time scales, competitive interactions often lead to distinct social ranks and differences in physiology and behavior. Understanding how initial responses lead to longer-term effects of social interactions requires examining the changes in responses over time. Here we examined the effects of social interactions on transcriptomic signatures at two times, at the end of a 45-minute interaction and 4 hours later, in female Polistes fuscatus paper wasp foundresses. Female P. fuscatus have variable facial patterns that are used for visual individual recognition, so we separately examined the transcriptional dynamics in the optic lobe and the non-visual brain. Results demonstrate much stronger transcriptional responses to social interactions in the non-visual brain compared to the optic lobe. Differentially regulated genes in response to social interactions are enriched for memory-related transcripts. Comparisons between winners and losers of the encounters revealed similar overall transcriptional profiles at the end of an interaction, which significantly diverged over the course of 4 hours, with losers showing changes in expression levels of genes associated with aggression and reproduction in paper wasps. On nests, subordinate foundresses are less aggressive, do more foraging and lay fewer eggs compared to dominant foundresses and we find losers shift expression of many genes in the non-visual brain, including vitellogenin, related to aggression, worker behavior, and reproduction within hours of losing an encounter. These results highlight the early neurogenomic changes that likely contribute to behavioral and physiological effects of social status changes in a social insect.


Assuntos
Comportamento Animal , Genoma de Inseto , Comportamento Social , Vespas/fisiologia , Agressão , Animais , Encéfalo/fisiologia , Feminino , Regulação da Expressão Gênica , Vespas/genética
5.
Trends Parasitol ; 37(7): 588-596, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685784

RESUMO

Brood parasitism is the introduction of unrelated progeny into the nest or colony of a host that then raises the foreign young. This reproductive strategy has evolved independently and repeatedly among diverse animal taxa, and brood parasite-host interactions have become models for understanding coevolutionary arms races. Yet brood parasites have remained largely overlooked in previous syntheses of natural enemy ecology. Here, we argue that brood parasites are a heterogeneous and versatile class of natural enemies, blending traits characteristic of predators and trophic parasites. The functional distinctness of brood parasites reinforces the idea that natural enemies exist along a continuum rather than as a dichotomy. Brood parasite-host interactions can serve as valuable case studies to unify parasite-host and predator-prey theories.


Assuntos
Evolução Biológica , Interações Hospedeiro-Parasita/fisiologia , Parasitos/fisiologia , Animais
6.
Sci Rep ; 10(1): 4092, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139746

RESUMO

The recognition of and differential responses to salient stimuli are among the main drivers of behavioral plasticity, yet, how animals evolve and modulate functional responses to novel classes of antagonistic stimuli remain poorly understood. We studied free-living male red-winged blackbirds (Agelaius phoeniceus) to test whether gene expression responses in blood are distinct or shared between patterns of aggressive behavioral responses directed at simulated conspecific versus heterospecific intruders. In this species, males defend territories against conspecific males and respond aggressively to female brown-headed cowbirds (Molothrus ater), a brood parasite that commonly lays eggs in blackbird nests. Both conspecific songs and parasitic calls elicited aggressive responses from focal subjects and caused a downregulation in genes associated with immune system response, relative to control calls of a second, harmless heterospecific species. In turn, only the conspecific song treatment elicited an increase in singing behavior and an upregulation of genes associated with metabolic processes relative to the two heterospecific calls. Our results suggest that aspects of antagonistic behaviors to both conspecifics and brood parasites can be mediated by similar physiological responses, suggestive of shared molecular and behavioral pathways involved in the recognition and reaction to both evolutionarily old and new enemies.


Assuntos
Percepção Auditiva/fisiologia , Comportamento Sexual Animal/fisiologia , Canto/fisiologia , Aves Canoras/fisiologia , Transcriptoma , Vocalização Animal/fisiologia , Animais , Evolução Biológica , Feminino , Perfilação da Expressão Gênica , Masculino
7.
Proc Natl Acad Sci U S A ; 117(6): 3045-3052, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980529

RESUMO

Cognitive abilities can vary dramatically among species. The relative importance of social and ecological challenges in shaping cognitive evolution has been the subject of a long-running and recently renewed debate, but little work has sought to understand the selective dynamics underlying the evolution of cognitive abilities. Here, we investigate recent selection related to cognition in the paper wasp Polistes fuscatus-a wasp that has uniquely evolved visual individual recognition abilities. We generate high quality de novo genome assemblies and population genomic resources for multiple species of paper wasps and use a population genomic framework to interrogate the probable mode and tempo of cognitive evolution. Recent, strong, hard selective sweeps in P. fuscatus contain loci annotated with functions in long-term memory formation, mushroom body development, and visual processing, traits which have recently evolved in association with individual recognition. The homologous pathways are not under selection in closely related wasps that lack individual recognition. Indeed, the prevalence of candidate cognition loci within the strongest selective sweeps suggests that the evolution of cognitive abilities has been among the strongest selection pressures in P. fuscatus' recent evolutionary history. Detailed analyses of selective sweeps containing candidate cognition loci reveal multiple cases of hard selective sweeps within the last few thousand years on de novo mutations, mainly in noncoding regions. These data provide unprecedented insight into some of the processes by which cognition evolves.


Assuntos
Evolução Biológica , Cognição/fisiologia , Seleção Genética/genética , Vespas/genética , Vespas/fisiologia , Animais , Genoma de Inseto/genética , Reconhecimento Psicológico/fisiologia
8.
Ecology ; 99(10): 2405, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29999519

RESUMO

Cooperative breeding decreases the direct reproductive output of subordinate individuals, but cooperation can be evolutionarily favored when there are challenges or constraints to breeding independently. Environmental factors, including temperature, precipitation, latitude, high seasonality, and environmental harshness have been hypothesized to correlate with the presence of cooperative breeding. However, to test the relationship between cooperation and ecological constraints requires comparative data on the frequency and variation of cooperative breeding across differing environments, ideally replicated across multiple species. Paper wasps are primitively social species, forming colonies composed of reproductively active dominants and foraging subordinates. Adult female wasps, referred to as foundresses, initiate new colonies. Nests can be formed by a single solitary foundress (noncooperative) or by multiple foundress associations (cooperative). Cooperative behavior varies within and among species, making paper wasps species well suited to disentangling ecological correlates of variation in cooperative behavior. This data set reports the frequency and extent of cooperative nest founding for 87 paper wasp species. Data were assembled from more than 170 published sources, previously unpublished field observations, and photographs contributed by citizen scientists to online natural history repositories. The data set includes 25,872 nest observations and reports the cooperative behavioral decisions for 45,297 foundresses. Species names were updated to reflect modern taxonomic revisions. The type of substrate on which the nest was built is also included, when available. A smaller population-level version of this data set found that the presence or absence of cooperative nesting in paper wasps was correlated with temperature stability and environmental harshness, but these variables did not predict the extent of cooperation within species. This expanded data set contains details about individual nests and further increases the power to address the relationship between the environment and the presence and extent of cooperative breeding. Beyond the ecological drivers of cooperation, these high-resolution data will be useful for future studies examining the evolutionary consequences of variation in social behavior. This data set may be used for research or educational purposes provided that this data paper is cited.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...