Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Rep ; 46(1): 343-354, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30443823

RESUMO

Cysteine (Cys) is the first identified molecule in plant metabolism which includes both sulfur and nitrogen. It can be synthesized in three cellular compartments, containing chloroplast, cytoplasm and mitochondrion. The final step of cysteine biosynthesis is catalyzed by the O-acetylserine(thiol)lyase enzyme (OASTL, E.C. 4.2.99). In the present study, seven members of the OASTL gene family in the sorghum (Sorghum bicolor) genome were identified at a genome-wide scale and comparative bioinformatics analyses were performed between sorghum and Arabidopsis OASTLs. In all OASTL proteins, a pyridoxal-phosphate dependent domain structure (PALP, PF00291) was identified. The gene ontology annotations also revealed that all sorghum OASTL genes have KOG1252 (Cystathionine beta-synthase and related enzyme) and K01738 (cysteine synthase A) activities. In promotor sequences of OASTL genes, diverse cis-acting elements were found, including hormone and light responsiveness, abiotic stress responsiveness, and tissue-specific ones (meristem and endosperm). Sorghum OASTL genes demonstrated medium or high level expressions in anatomical parts and developmental stages based on the digital expression data. Expression of OASTL genes were also analyzed under cadmium (Cd) stress in sorghum by Real Time-quantitative PCR (RT-qPCR). The results exclusively showed that OASTL A1-2 gene was 1.12 fold up-regulated in roots, whereas cysteine synthase 26 was 2.25 fold down-regulated in leaves. The predicted 3D structure of OASTLs indicated some structural diversities as well as variations in the secondary structures.


Assuntos
Carbono-Oxigênio Liases/genética , Sorghum/genética , Arabidopsis/genética , Cádmio/efeitos adversos , Cádmio/farmacologia , Carbono-Oxigênio Liases/fisiologia , Cloroplastos/metabolismo , Cisteína/biossíntese , Ontologia Genética , Genoma de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Sorghum/metabolismo , Estresse Fisiológico/genética , Compostos de Sulfidrila/metabolismo , Transcriptoma/genética
2.
Plant Physiol Biochem ; 109: 146-155, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27683050

RESUMO

Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study.


Assuntos
Boro/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Populus/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Biodegradação Ambiental , Transporte Biológico , Boro/toxicidade , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genótipo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Populus/crescimento & desenvolvimento , Populus/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA