Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 13(11): e10732, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38020674

RESUMO

The King Rail (Rallus elegans) is a wetland dependent species of conservation concern. Our objective was to gain a better understanding of the breeding habitat associations of King Rails in the Midwestern United States and the relationship of this species to other obligate marsh birds using occupancy and MaxEnt models. To collect data pertaining to occupancy, we placed trail cameras at 50 random points in coastal wetlands in the western Lake Erie basin where calls of King Rails were continuously broadcast at night. Data pertaining to other marsh bird species were collected via call-broadcast surveys and camera surveys at each sample point. For MaxEnt modeling, we obtained presence data for King Rails and other obligate marsh birds from eBird and habitat data from GIS databases. Trail cameras and call-broadcast surveys captured 10 detections of King Rails at nine sites, an 18% naive occupancy rate. King Rail occupancy was positively related to amount of interspersion, average water depth, and percent cover of emergent vegetation at local scales within a 5-m radius. Our MaxEnt models indicated that, at a broader scale, the presence of other rail species such as the Sora (Porzana carolina) may be more important for predicting King Rail presence than other marsh birds or coarse wetland categories such as "emergent vegetation." Our results could help wetland managers to predict where King Rails occur and to adapt management plans to incorporate King Rail conservation.

2.
J Great Lakes Res ; 45(1): 129-137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31728077

RESUMO

Hydrologic linkages among coastal wetland and nearshore areas allow coastal fish to move among the habitats, which has led to a variety of habitat use patterns. We determined nutritional support of coastal fishes from 12 wetland-nearshore habitat pairs using stable isotope analyses, which revealed differences among species and systems in multi-habitat use. Substantial (proportions > 0.30) nutrition often came from the habitat other than that in which fish were captured. Nearshore subsidies to coastal wetlands indicate wetlands are not exclusively exporters of energy and materials; rather, there is reciprocity in the mutual energetic support of nearshore and wetland food webs. Coastal wetland hydrogeomorphology influenced the amount of multi-habitat use by coastal fishes. Fishes from systems with relatively open interfaces between wetland and nearshore habitats exhibited less nutritional reliance on the habitat in which they were captured, and higher use of resources from the adjacent habitat. Comparisons of stable isotope analyses of nutrition with otolith analyses of occupancy indicated nutritional sources often corresponded with habitat occupancy; however, disparities among place of capture, otolith analyses, and nutritional analyses indicated differences in the types of support those analyses inform. Disparities between occupancy information and nutritional information can stem from movements for support functions other than foraging. Together, occupancy information from otolith microchemistry and nutritional information from stable isotope analyses provide complementary measures of the use of multiple habitats by mobile consumers. This work underscores the importance of protecting or restoring a diversity of coastal habitats and the hydrologic linkages among them.

3.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855669

RESUMO

Microbial communities within the soil of Laurentian Great Lakes coastal wetlands drive biogeochemical cycles and provide several other ecosystem services. However, there exists a lack of understanding of how microbial communities respond to nutrient gradients and human activity in these systems. This research sought to address the lack of understanding through exploration of relationships among nutrient gradients, microbial community diversity, and microbial networks. Significant differences in microbial community structure were found among coastal wetlands within the western basin of Lake Erie and all other wetlands studied (three regions within Saginaw Bay and one region in the Beaver Archipelago). These diversity differences coincided with higher nutrient levels within the Lake Erie region. Site-to-site variability also existed within the majority of the regions studied, suggesting site-scale heterogeneity may impact microbial community structure. Several subnetworks of microbial communities and individual community members were related to chemical gradients among wetland regions, revealing several candidate indicator communities and taxa that may be useful for Great Lakes coastal wetland management. This research provides an initial characterization of microbial communities among Great Lakes coastal wetlands and demonstrates that microbial communities could be negatively impacted by anthropogenic activities.


Assuntos
Microbiota , Nutrientes/análise , Microbiologia do Solo , Solo/química , Áreas Alagadas , Great Lakes Region , Atividades Humanas , Humanos , Consórcios Microbianos/genética , Microbiota/genética
4.
Wetlands (Wilmington) ; 39(6): 1357-1366, 2019 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-34326565

RESUMO

Traditionally, ecosystem monitoring, conservation, and restoration have been conducted in a piecemeal manner at the local scale without regional landscape context. However, scientifically driven conservation and restoration decisions benefit greatly when they are based on regionally determined benchmarks and goals. Unfortunately, required data sets rarely exist for regionally important ecosystems. Because of early recognition of the extreme ecological importance of Laurentian Great Lakes coastal wetlands, and the extensive degradation that had already occurred, significant investments in coastal wetland research, protection, and restoration have been made in recent decades and continue today. Continued and refined assessment of wetland condition and trends, and the evaluation of restoration practices are all essential to ensuring the success of these investments. To provide wetland managers and decision makers throughout the Laurentian Great Lakes basin with the optimal tools and data needed to make scientifically-based decisions, our regional team of Great Lakes wetland scientists developed standardized methods and indicators used for assessing wetland condition. From a landscape perspective, at the Laurentian Great Lakes ecosystem scale, we established a stratified random-site-selection process to monitor birds, anurans, fish, macroinvertebrates, vegetation, and physicochemical conditions of coastal wetlands in the US and Canada. Monitoring of approximately 200 wetlands per year began in 2011 as the Great Lakes Coastal Wetland Monitoring Program. In this paper, we describe the development, delivery, and expected results of this ongoing international, multi-disciplinary, multi-stakeholder, landscape-scale monitoring program as a case example of successful application of landscape conservation design.

5.
FEMS Microbiol Lett ; 365(24)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445437

RESUMO

Oxygen (O2) concentrations often fluctuate over diel timescales within wetlands, driven by temperature, sunlight, photosynthesis and respiration. These daily fluxes have been shown to impact biogeochemical transformations (e.g. denitrification), which are mediated by the residing microbial community. However, little is known about how resident microbial communities respond to diel physical and chemical fluxes in freshwater wetland ecosystems. In this study, total microbial (bacterial and archaeal) community structure was significantly related to diel time points in just one out of four distinct freshwater wetlands sampled. This suggests that daily environmental shifts may influence wetlands differentially based upon the resident microbial community and specific physical and chemical conditions of a freshwater wetland. When exploring the microbial communities within each wetland at finer resolutions, subcommunities of taxa within two wetlands were found to correspond to fluctuating O2 levels. Microbial taxa that were found to be susceptible to fluctuating O2 levels within these subnetworks may have intimate ties to metabolism and/or diel redox cycles. This study highlights that freshwater wetland microbial communities are often stable in community structure when confronted with short-term O2 fluxes; however, specialist taxa may be sensitive to these same fluxes.


Assuntos
Archaea/metabolismo , Bactérias/isolamento & purificação , Água Doce/microbiologia , Oxigênio/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Água Doce/análise , Microbiota , Oxigênio/análise , Filogenia , Microbiologia do Solo , Áreas Alagadas
6.
Environ Monit Assess ; 190(10): 580, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30203154

RESUMO

Biotic indicators are useful for assessing ecosystem health because the structure of resident communities generally reflects abiotic conditions integrated over time. We used fish data collected over 5 years for 470 Great Lakes coastal wetlands to develop multi-metric indices of biotic integrity (IBI). Sampling and IBI development were stratified by vegetation type within each wetland to account for differences in physical habitat. Metrics were evaluated against numerous indices of anthropogenic disturbance derived from water quality and surrounding land-cover variables. Separate datasets were used for IBI development and testing. IBIs were composed of 10-11 metrics for each of four vegetation types (bulrush, cattail, water lily, and submersed aquatic vegetation). Scores of all IBIs correlated well with disturbance indices using the development data, and the accuracy of our IBIs was validated using the testing data. Our fish IBIs can be used to prioritize wetland protection and restoration efforts across the Great Lakes basin. The IBIs will also be useful in monitoring programs mandated by the Agreement between Canada and the United States of America on Great Lakes Water Quality, such as for assessing Beneficial Use Impairments (BUIs) in Great Lakes Areas of Concern, and in other ecosystem management programs in Canada and the USA.


Assuntos
Monitoramento Ambiental , Peixes , Áreas Alagadas , Animais , Biodiversidade , Aves , Canadá , Ecologia , Ecossistema , Lagos , Estados Unidos , Qualidade da Água
7.
PeerJ ; 5: e3937, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062609

RESUMO

Lakes are dynamic and complex ecosystems that can be influenced by physical, chemical, and biological processes. Additionally, individual lakes are often chemically and physically distinct, even within the same geographic region. Here we show that differences in physicochemical conditions among freshwater lakes located on (and around) the same island, as well as within the water column of each lake, are significantly related to aquatic microbial community diversity. Water samples were collected over time from the surface and bottom-water within four freshwater lakes located around Beaver Island, MI within the Laurentian Great Lakes region. Three of the sampled lakes experienced seasonal lake mixing events, impacting either O2, pH, temperature, or a combination of the three. Microbial community alpha and beta diversity were assessed and individual microbial taxa were identified via high-throughput sequencing of the 16S rRNA gene. Results demonstrated that physical and chemical variability (temperature, dissolved oxygen, and pH) were significantly related to divergence in the beta diversity of surface and bottom-water microbial communities. Despite its correlation to microbial community structure in unconstrained analyses, constrained analyses demonstrated that dissolved organic carbon (DOC) concentration was not strongly related to microbial community structure among or within lakes. Additionally, several taxa were correlated (either positively or negatively) to environmental variables, which could be related to aerobic and anaerobic metabolisms. This study highlights the measurable relationships between environmental conditions and microbial communities within freshwater temperate lakes around the same island.

8.
J Environ Qual ; 38(3): 1255-65, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19398524

RESUMO

Urbanization of watersheds can impose multiple stressors on stream, wetland, and lake ecosystems. Sediment contamination, alterations to the natural hydrologic regime, and nutrient loading are examples of these stressors which often occur simultaneously. As a consequence, restoration is challenged by the multi-stressor reality of most urban watersheds. The goal of this study was to compare two watersheds in western Michigan, both with substantial urban development, but with different levels of sediment contamination resulting from historic industrial activities, to determine the effects of contamination on invertebrate and fish community structure. The study included multiple sites on both streams, two wetlands adjacent to each stream, and the embayments where each stream emptied into Mona Lake. We compared a suite of abiotic parameters including sediment contamination, sediment toxicity, and water column chemical/physical conditions as well as fish and invertebrate community structure. Sediment contaminants, including heavy metals and polycyclic aromatic hydrocarbons, were found in higher concentrations and survival of test organisms in toxicity bioassays was reduced in the more industrialized watershed. Fewer insect taxa, especially the sensitive Ephemeroptera, Plecoptera, and Trichoptera, were found in the more industrialized system. Fish taxa richness and catch per unit effort were reduced in the wetlands of the more industrialized watershed as well and both invertebrate and fish index of biotic integrity scores were also lower in the more industrialized system. Our study demonstrates that contamination due to historic industrial activities can have substantial and lasting effects on biotic communities of multiple habitat types well downstream of where the activities occurred.


Assuntos
Peixes , Água Doce/análise , Sedimentos Geológicos/análise , Invertebrados , Poluição da Água/efeitos adversos , Áreas Alagadas , Animais , Monitoramento Ambiental , Michigan , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...