Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1281058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075883

RESUMO

Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.

2.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894923

RESUMO

Obtaining sufficient and high-quality genomic DNA from sludge samples is a fundamental issue of feasibility and comparability in genomic studies of microbial diversity. Commercial kits for soil are often used for the extraction of gDNA from sludge samples due to the lack of specific kits. However, the evaluation of the performance of commercial kits for sludge DNA extraction is scarce and optimization of these methods to obtain a high quantity and quality of DNA is necessary, especially for downstream genomic sequencing. Sequential batch reactors (SBRs) loaded with lignocellulosic biomass are used for the synthesis of renewable resources such as levulinic acid (LA), adipic acid (AA), and polyhydroxyalkanoates (PHAs), and the biochemical synthesis of these compounds is conducted through the inoculation of microbes present in the residual activated sludge (AS) obtained from a municipal wastewater treatment plant. To characterize these microbes, the extraction of DNA from residual sewage sludge was conducted with three different commercial kits: Nucleospin® Soil from Macherey-Nagel, DNEasy® PowerSoil® from Qiagen, and E.Z.N.A.® Plant DNA Kit from Omega BIO-TEK. Nevertheless, to obtain the highest load and quality of DNA for next-generation sequencing (NGS) analysis, different pretreatments and different combinations of these pretreatments were used. The pretreatments considered were an ultrasonic bath and a temperature of 80 °C, together and separately with different incubation time periods of 30, 60, and 90 min. The results obtained suggest a significant improvement in the efficiency and quality of DNA extraction with the three commercial extraction kits when used together with the ultrasonic bath and 80 °C for 60 min. Here, we were able to prove that physical pretreatments are a viable alternative to chemical lysis for DNA extraction from complex samples such as sludge.


Assuntos
DNA , Esgotos , DNA Bacteriano/genética , Genômica , Solo
3.
PLoS One ; 17(10): e0273392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206251

RESUMO

Herein we report the use of an environmental multimetal(loid)-resistant strain, MF05, to biosynthesize single- or multi-element nanostructures under anaerobic conditions. Inorganic nanostructure synthesis typically requires methodologies and conditions that are harsh and environmentally hazardous. Thus, green/eco-friendly procedures are desirable, where the use of microorganisms and their extracts as bionanofactories is a reliable strategy. First, MF05 was entirely sequenced and identified as an Escherichia coli-related strain with some genetic differences from the traditional BW25113. Secondly, we compared the CdS nanostructure biosynthesis by whole-cell in a design defined minimal culture medium containing sulfite as the only sulfur source to obtain sulfide reduction from a low-cost chalcogen reactant. Under anaerobic conditions, this process was greatly favored, and irregular CdS (ex. 370 nm; em. 520-530 nm) was obtained. When other chalcogenites were tested (selenite and tellurite), only spherical Se0 and elongated Te0 nanostructures were observed by TEM and analyzed by SEM-EDX. In addition, enzymatic-mediated chalcogenite (sulfite, selenite, and tellurite) reduction was assessed by using MF05 crude extracts in anaerobiosis; similar results for nanostructures were obtained; however Se0 and Te0 formation were more regular in shape and cleaner (with less background). Finally, the in vitro nanostructure biosynthesis was assessed with salts of Ag, Au, Cd, and Li alone or in combination with chalcogenites. Several single or binary nanostructures were detected. Our results showed that MF05 is a versatile anaerobic bionanofactory for different types of inorganic NS. synthesis.


Assuntos
Nanoestruturas , Sais , Anaerobiose , Cádmio , Misturas Complexas , Nanoestruturas/química , Ácido Selenioso , Sulfetos , Sulfitos , Enxofre , Telúrio
4.
Animals (Basel) ; 12(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35739813

RESUMO

Farmed salmonids show alterations in bone structure that result in skeletal deformities during formation, repair, and regeneration processes, with loss of mineralization at the level of the axial skeleton, mainly the head and spine, affecting their quality of life and even causing death. Despite improving factors, such as farming conditions, diets, and genetics, bone alterations appear more frequently in farmed fish than in wild fish. Thus, we used SEM-EDX, and TGA-DSC to study bone mineralization in farmed and wild rainbow trouts. As expected, we found significant differences in the nutritional parameters of farmed and wild fish (p < 0.05). Microstructural analyses indicated that farmed fish have a more robust mineral structure (p < 0.05), confirming the differences in mineralization and microstructure between both groups. However, the mechanisms regulating absorption and distribution in the organism and their effect on bone mineralization remain to be known. In our study, the combined use of techniques such as SEM-EDX and TGA-DSC allows a clearer assessment and detailed characterization beneficial to understanding the relationship between diet control and bone microstructure.

5.
Biol Res ; 55(1): 23, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715831

RESUMO

BACKGROUND: Human Gut Microbiota (HGM) is composed of more than one thousand species, playing an important role in the health status of individuals. Dysbiosis (an HGM imbalance) is augmented as chronic kidney disease (CKD) progresses, as loss of kidney function accelerates. Increased antibiotic use in CKD subjects and consumption of nephrotoxic heavy metals and metalloids such as lead, cadmium, arsenic, and mercury in tap water increases the dysbiosis state. Studies in people with stage 3 CKD are complex to carry out, mainly because patients are self-reliant who rarely consult a specialist. The current work focused on this type of patient. RESULTS: Lead and arsenic-resistant bacteria were obtained from self-reliant (that stands on its own) stage 3 CKD subjects. Pathogen-related Firmicutes and Proteobacteria genus bacteria were observed. Resistance and potentiation of antibiotic effects in the presence of metal(loid)s in vitro were found. Furthermore, the presence of the following genes markers for antibiotic and metal(loid) resistance were identified by qPCR: oxa10, qnrB1, mphB, ermB, mefE1, arr2, sulll, tetA, floR, strB, dhfr1, acrB, cadA2k, cadA3k, arsC, pbrA. We observed a decrease in the number of metal resistance markers. CONCLUSIONS: The presence of cadA and arsC genetic markers of antibiotics and metal(loid)s resistance were detected in samples from stage 3 CKD subjects. Lower gene amplification in advanced stages of CKD were also observed, possibly associated with a decrease in resident HGM during kidney disease progression.


Assuntos
Arsênio , Microbioma Gastrointestinal , Metais Pesados , Insuficiência Renal Crônica , Antibacterianos/farmacologia , Bactérias/genética , Resistência Microbiana a Medicamentos , Disbiose/microbiologia , Humanos
6.
Biol. Res ; 55: 23-23, 2022. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1383924

RESUMO

BACKGROUND: Human Gut Microbiota (HGM) is composed of more than one thousand species, playing an important role in the health status of individuals. Dysbiosis (an HGM imbalance) is augmented as chronic kidney disease (CKD) progresses, as loss of kidney function accelerates. Increased antibiotic use in CKD subjects and consumption of nephrotoxic heavy metals and metalloids such as lead, cadmium, arsenic, and mercury in tap water increases the dysbiosis state. Studies in people with stage 3 CKD are complex to carry out, mainly because patients are self-reliant who rarely consult a specialist. The current work focused on this type of patient. RESULTS: Lead and arsenic-resistant bacteria were obtained from self-reliant (that stands on its own) stage 3 CKD subjects. Pathogen-related Firmicutes and Proteobacteria genus bacteria were observed. Resistance and potentiation of antibiotic effects in the presence of metal(loid)s in vitro were found. Furthermore, the presence of the following genes markers for antibiotic and metal(loid) resistance were identified by qPCR: oxa10, qnrB1, mphB, ermB, mefE1, arr2, sulll, tetA, floR, strB, dhfr1, acrB, cadA2k, cadA3k, arsC, pbrA. We observed a decrease in the number of metal resistance markers. CONCLUSIONS: The presence of cadA and arsC genetic markers of antibiotics and metal(loid)s resistance were detected in samples from stage 3 CKD subjects. Lower gene amplification in advanced stages of CKD were also observed, possibly associated with a decrease in resident HGM during kidney disease progression.


Assuntos
Humanos , Arsênio , Metais Pesados , Insuficiência Renal Crônica , Microbioma Gastrointestinal , Bactérias/genética , Resistência Microbiana a Medicamentos , Disbiose/microbiologia , Antibacterianos/farmacologia
7.
Rev. chil. endocrinol. diabetes ; 14(2): 90-94, 2021.
Artigo em Espanhol | LILACS | ID: biblio-1283560

RESUMO

La diabetes mellitus tipo 2 (DM2), habitualmente asociada a adultos en edad media y adulto mayor, ha presentado un aumento en su incidencia en pacientes menores de 40 años, lo que se conoce como DM2 de inicio en paciente joven. Varios estudios sugieren que este tipo de diabetes presenta no sólo un deterioro más rápido de las células beta-pancreáticas en comparación con la DM2 de inicio más tardío, sino que también un mayor riesgo de complicaciones que pacientes con DM Tipo1, lo que sugiere una variable independiente de los años de exposición a la enfermedad y por tanto, un fenotipo más agresivo. Por otra parte, hay evidencia que afirma que existen grupos poblacionales en mayor riesgo de desarrollar esta patología, particularmente ciertas etnias. En el presente trabajo se exponen los principales hallazgos de una reciente revisión del tema y se los compara con los datos nacionales disponibles. Dada la alta prevalencia de DM2 en la población chilena y la escasa cantidad de estudios epidemiológicos de calidad que permitan conocer nuestro panorama con mayor precisión, es que se destaca la importancia de estos últimos para poder tomar medidas de salud pública adecuadas.


Type 2 diabetes mellitus type 2 (T2DM), commonly associated with the middle to old aged adults group, has shown an increase in incidence in patients younger than 40 years old, which is known as young-onset type 2 diabetes mellitus. Several studies suggest that this type of diabetes not only exhibits a faster deterioration of the beta-pancreatic cells in comparison with type 1 diabetes mellitus patients, but also a greater risk of complications not regarding the time of exposure to the disease, therefore a more aggressive phenotype. Otherwise, there is evidence which asserts that some population groups are in mayor risk of developing this disease, especially certain ethnics. In this work it is exposed the main findings of a recent review of the subject and it is contrasted with available national data. Given the high prevalence of T2DM in the chilean population and the little amount of epidemiological high-quality studies that allows us to know our outlook with greater precision, it is highlighted the need for them in order to make adequate public health decisions.


Assuntos
Humanos , Adulto , Fatores Etários , Diabetes Mellitus Tipo 2/epidemiologia , Chile/epidemiologia , Fatores de Risco , Idade de Início , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/mortalidade , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/epidemiologia , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/epidemiologia
8.
BMC Biotechnol ; 20(1): 29, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471409

RESUMO

BACKGROUND: The bacterial genus Exiguobacterium includes several species that inhabit environments with a wide range of temperature, salinity, and pH. This is why the microorganisms from this genus are known generically as polyextremophiles. Several environmental isolates have been explored and characterized for enzyme production as well as for bioremediation purposes. In this line, toxic metal(loid) reduction by these microorganisms represents an approach to decontaminate soluble metal ions via their transformation into less toxic, insoluble derivatives. Microbial-mediated metal(loid) reduction frequently results in the synthesis of nanoscale structures-nanostructures (NS) -. Thus, microorganisms could be used as an ecofriendly way to get NS. RESULTS: We analyzed the tolerance of Exiguobacterium acetylicum MF03, E. aurantiacum MF06, and E. profundum MF08 to Silver (I), gold (III), and tellurium (IV) compounds. Specifically, we explored the ability of cell-free extracts from these bacteria to reduce these toxicants and synthesize NS in vitro, both in the presence or absence of oxygen. All isolates exhibited higher tolerance to these toxicants in anaerobiosis. While in the absence of oxygen they showed high tellurite- and silver-reducing activity at pH 9.0, whereas AuCl4- which was reduced at pH 7.0 in both conditions. Given these results, cell-free extracts were used to synthesize NS containing silver, gold or tellurium, characterizing their size, morphology and chemical composition. Silver and tellurium NS exhibited smaller size under anaerobiosis and their morphology was circular (silver NS), starred (tellurium NS) or amorphous (gold NS). CONCLUSIONS: This nanostructure-synthesizing ability makes these isolates interesting candidates to get NS with biotechnological potential.


Assuntos
Extratos Celulares/química , Exiguobacterium/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Telúrio/química , Aerobiose , Anaerobiose , Antibacterianos/farmacologia , Biodegradação Ambiental , Extratos Celulares/farmacologia , Exiguobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Temperatura
9.
Microbiol Resour Announc ; 8(49)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31806744

RESUMO

Here, we report a draft genome sequence of Aeromonas veronii strain CTe-01 (4.5 Mb), a hemolytic, heavy metal-resistant bacterium isolated from a wastewater treatment plant located at Cachiche, Ica, Peru. These characteristics could be used for bioremediation of contaminated environments.

10.
Molecules ; 24(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781370

RESUMO

In this work the enzyme laccase from Trametes versicolor was used to synthetize 2,6-dimethoxy-4-(phenylimino)cyclohexa-2,5-dienone derivatives. Ten products with different substitutions in the aromatic ring were synthetized and characterized using ¹H- and 13C-NMR and mass spectrometry. The 3,5-dichlorinated compound showed highest antifungal activity against the phytopathogen Botrytis cinerea, while the p-methoxylated compound had the lowest activity; however, the antifungal activity of the products was higher than the activity of the substrates of the reactions. Finally, the results suggested that these compounds produced damage in the fungal cell wall.


Assuntos
Antifúngicos/síntese química , Antifúngicos/farmacologia , Botrytis/efeitos dos fármacos , Biocatálise , Isomerismo , Lacase/metabolismo , Trametes/química
11.
Bioresour Technol ; 277: 211-215, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30639092

RESUMO

The main goal of this work was to evaluate the performance of ß-galactosidase from Exiguobacterium acetylicum MF03 in both hydrolysis and transgalactosylation reactions from different substrates. The enzyme gene was expressed in Escherichia coli BL21 (DE3), sequenced, and subjected to bioinformatic and kinetic assessment. Results showed that the enzyme was able to hydrolyze lactulose and o-nitrophenyl-ß-d-galactopyranoside, but unable to hydrolyze lactose, o-nitrophenyl-ß-d-glucopyranoside, butyl- and pentyl-ß-d-galactosides. This unique and novel substrate specificity converts the E. acetylicum MF03 ß-galactosidase into an ideal catalyst for the formulation of an enzymatic kit for lactulose quantification in thermally processed milk. This is because costly steps to eliminate glucose (resulting from hydrolysis of lactose when a customary ß-galactosidase is used) can be avoided.


Assuntos
Bacillaceae/enzimologia , beta-Galactosidase/metabolismo , Biocatálise , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Temperatura Alta , Hidrólise , Cinética , Especificidade por Substrato , beta-Galactosidase/genética , beta-Galactosidase/isolamento & purificação
12.
Front Microbiol ; 9: 959, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29869640

RESUMO

Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS), which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loid)s. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid)-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite ( TeO32- ) and tetrachloro aurate ( AuCl4- ) reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite ( SeO32- ) and silver (Ag+) reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude extracts showed MICs of 45- and 66- µg/ml for E. coli and L. monocytogenes, respectively. Similar MIC values (40 and 82 µg/ml, respectively) were observed for TeNS generated using crude extracts from gorA-overexpressing E. coli. In turn, AuNS MICs for E. coli and L. monocytogenes were 64- and 68- µg/ml, respectively.

13.
PeerJ ; 6: e4402, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29479501

RESUMO

The Psychrobacter genus is a cosmopolitan and diverse group of aerobic, cold-adapted, Gram-negative bacteria exhibiting biotechnological potential for low-temperature applications including bioremediation. Here, we present the draft genome sequence of a bacterium from the Psychrobacter genus isolated from a sediment sample from King George Island, Antarctica (3,490,622 bp; 18 scaffolds; G + C = 42.76%). Using phylogenetic analysis, biochemical properties and scanning electron microscopy the bacterium was identified as Psychrobacter glacincola BNF20, making it the first genome sequence reported for this species. P. glacincola BNF20 showed high tellurite (MIC 2.3 mM) and chromate (MIC 6.0 mM) resistance, respectively. Genome-wide nucleotide identity comparisons revealed that P. glacincola BNF20 is highly similar (>90%) to other uncharacterized Psychrobacter spp. such as JCM18903, JCM18902, and P11F6. Bayesian multi-locus phylogenetic analysis showed that P. glacincola BNF20 belongs to a polyphyletic clade with other bacteria isolated from polar regions. A high number of genes related to metal(loid) resistance were found, including tellurite resistance genetic determinants located in two contigs: Contig LIQB01000002.1 exhibited five ter genes, each showing putative promoter sequences (terACDEZ), whereas contig LIQB1000003.2 showed a variant of the terZ gene. Finally, investigating the presence and taxonomic distribution of ter genes in the NCBI's RefSeq bacterial database (5,398 genomes, as January 2017), revealed that 2,623 (48.59%) genomes showed at least one ter gene. At the family level, most (68.7%) genomes harbored one ter gene and 15.6% exhibited five (including P. glacincola BNF20). Overall, our results highlight the diverse nature (genetic and geographic diversity) of the Psychrobacter genus, provide insights into potential mechanisms of metal resistance, and exemplify the benefits of sampling remote locations for prospecting new molecular determinants.

14.
Front Microbiol ; 9: 3118, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619192

RESUMO

Microorganism survival in the presence of toxic substances such as metal(loid)s lies chiefly on their ability to resist (or tolerate) such elements through specific resistance mechanisms. Among them, toxicant reduction has attracted the attention of researchers because metal(loid)-reducing bacteria are being used to recover and/or decontaminate polluted sites. Particularly, our interest is to analyze the toxicity of gold and tellurium compounds for the environmental microorganism Enterobacter cloacae MF01 and also to explore the generation of nanostructures to be used in future biotechnological processes. Resistance of E. cloacae MF01 to gold and tellurium salts as well as the putative mechanisms involved -both in aerobic and anaerobic growth conditions- was evaluated. These metal(loid)s were selected because of their potential application in biotechnology. Resistance to auric tetrachloride acid (HAuCl4) and potassium tellurite (K2TeO3) was assessed by determining areas of growth inhibition, minimum inhibitory concentrations, and growth curves as well as by viability tests. E. cloacae MF01 exhibited higher resistance to HAuCl4 and K2TeO3 under aerobic and anaerobic conditions, respectively. In general, their toxicity is mediated by the generation of reactive oxygen species and by a decrease of intracellular reduced thiols (RSH). To assess if resistance implies toxicant reduction, intra- and extra-cellular toxicant-reducing activities were evaluated. While E. cloacae MF01 exhibited intra- and extra-cellular HAuCl4-reducing activity, tellurite reduction was observed only intracellularly. Then, Au- and Te-containing nanostructures (AuNS and TeNS, respectively) were synthesized using crude extracts from E. cloacae MF01 and their size, morphology, and chemical composition was evaluated.

15.
Nat Commun ; 8: 15320, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28492282

RESUMO

The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy.


Assuntos
Antibacterianos/farmacologia , Vias Biossintéticas , Heme/biossíntese , Metaloides/farmacologia , Telúrio/farmacologia , Ácido Aminolevulínico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Deficiências de Ferro , Testes de Sensibilidade Microbiana , Modelos Biológicos , Mutação/genética , Protoporfirinas/farmacologia , Superóxidos/metabolismo , Telúrio/toxicidade
17.
Front Microbiol ; 7: 1160, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27507969

RESUMO

The tellurium oxyanion tellurite (TeO3 (2-)) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te(0)). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)(+)-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9-10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.

18.
Microbiol Res ; 177: 15-21, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26211961

RESUMO

The tellurium oxyanion tellurite is harmful for most microorganisms. Since its toxicity occurs chiefly once the toxicant reaches the intracellular compartment, unveiling the toxicant uptake process is crucial for understanding the whole phenomenon of tellurium toxicity. While the PitA phosphate transporter is thought to be one of the main paths responsible for toxicant entry into Escherichia coli, genetic and physiological evidence have identified the ActP acetate carrier as the main tellurite importer in Rhodobacter capsulatus. In this work, new background on the role of these transporters in tellurite uptake by E. coli is presented. It was found that, similar to what occurs in R. capsulatus, ActP is able to mediate toxicant entry to this bacterium. Lower reactive oxygen species levels were observed in E. coli lacking the actP gene. Antioxidant enzyme catalase and fumarase C activity was almost unchanged after short exposure of E. coli ΔactP to sublethal tellurite concentrations, suggesting a low antioxidant response. In this strain, tellurite uptake decreased significantly during the first 5 min of exposure and inductively coupled plasma optical emission spectroscopy assays using an actP-overexpressing strain confirmed that this carrier mediates toxicant uptake. Relative gene expression experiments by qPCR showed that actP expression is enhanced at short times of tellurite exposure, while pitA and pitB genes are induced later. Summarizing, the results show that ActP is involved in tellurite entry to E. coli and that its participation occurs mainly at early stages of toxicant exposure.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Telúrio/metabolismo , Transporte Biológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Perfilação da Expressão Gênica , Transportadores de Ácidos Monocarboxílicos/genética , Reação em Cadeia da Polimerase em Tempo Real , Ativação Transcricional/efeitos dos fármacos
19.
J Appl Biomater Funct Mater ; 13(3): e248-52, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26045223

RESUMO

BACKGROUND: Nanoparticles (NPs) are increasingly being used in a number of applications that include biomedicine, biological labeling and cancer marker targeting, and their successful storage is important to preserve their viability. A systematic investigation of the thermal and photo stability of chemically stabilized cadmium telluride (CdTe) quantum dots (QDs) under various storage conditions either in solution or as dried nanoparticles has not been published. Here we report experiments involving chemically synthesized glutathione-capped CdTe QDs whose photoluminescence spectra were examined initially and then periodically during storage times up to 76 days. METHODS: Samples of dried QDs or QDs in solution (water or buffered) were examined under different light conditions including complete darkness, constant 12,000 lux incident light, and under diurnal sunlight; at temperatures ranging from -80 °C to room temperature. RESULTS: Though QDs stored in solution in the dark at -80 °C lost only 50% of peak fluorescence (FL510) within 2 weeks, solution-stored QDs exposed to sunlight at room temperature showed FL510 drops of 85% in the first 24 hours. In contrast, QDs precipitated from aqueous solution, dried and stored in time course experiments in the presence of atmospheric oxygen--when resuspended in water--lost an average of only 12% FL510 over 76 days under all conditions tested, even in direct sunlight. CONCLUSIONS: Glutathione-capped CdTe particles can be stored as dried nanoparticles for extended periods of time, enhancing their viability in biomedicine, biological labeling and cancer marker targeting.


Assuntos
Compostos de Cádmio/química , Glutationa/química , Nanopartículas/química , Pontos Quânticos/química , Telúrio/química , Estabilidade de Medicamentos , Oxirredução , Processos Fotoquímicos , Compostos de Sulfidrila/química
20.
Arch Biochem Biophys ; 566: 67-75, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25447814

RESUMO

Escherichia coli exposed to tellurite shows augmented membrane lipid peroxidation and ROS content. Also, reduced thiols, protein carbonylation, [Fe-S] center dismantling, and accumulation of key metabolites occur in these bacteria. In spite of this, not much is known about tellurite effects on the E. coli electron transport chain (ETC). In this work, tellurite-mediated damage to the E. coli ETC's NADH dehydrogenases and terminal oxidases was assessed. Mutant lacking ETC components showed delayed growth, decreased oxygen consumption and increased ROS in the presence of the toxicant. Membranes from tellurite-exposed E. coli exhibited decreased oxygen consumption and dNADH/NADH dehydrogenase activity, showing an impairment of NDH-I but not of NDH-II activity. Regarding terminal oxidases, only the bo oxidase complex was affected by tellurite. When assaying NDH-I and NDH-II activity in the presence of superoxide, the NDH-I complex was preferentially damaged. The activity was partly restored in the presence of reducing agents, sulfide and Fe(2+) under anaerobic conditions, suggesting that damage affects NDH-I [4Fe-4S] centers. Finally, augmented membrane protein oxidation along with reduced oxidase activity was observed in the presence of the toxicant. Also, the increased expression of genes encoding alternative terminal oxidases probably reflects a cell's change towards anaerobic respiration when facing tellurite.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , NADH Desidrogenase/metabolismo , Oxirredutases/metabolismo , Telúrio/toxicidade , Aerobiose/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Membrana Celular/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Isoenzimas/genética , Isoenzimas/metabolismo , NADH Desidrogenase/genética , Oxirredução/efeitos dos fármacos , Oxirredutases/genética , Consumo de Oxigênio/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...