Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(5)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823371

RESUMO

In this work, two oligophenyleneimines type pentamers with terminal aldehydes, designated as DAFCHO (4,4'-((((((2,5-bis(octyloxy)-1,4-phenylene)bis(methanylylidene))bis(azanyl ylidene))bis(9H-fluorene-7,2-diyl))bis(azanylylidene))bis(methanylylidene))bis(2,5-bis(octyloxy) benzaldehyde)) and FDACHO (4,4'-((((((2,5-bis(octyloxy)-1,4-phenylene)bis(methanylylidene))bis (azanylylidene))bis(4,1-phenylene))bis(azanylylidene))bis(methanylylidene))bis(2,5-bis(octyloxy) benzaldehyde)) were synthesized by mechanochemistry method using 2,5-bis(octyloxy) terephtal aldehyde and 2,7-diaminofluorene or 1,4-phenylenediamine. All compounds were spectroscopically characterized using ¹H and 13C-NMR, FT-IR and mass spectrometry MALDITOF. The optical properties of the compounds were analyzed by UV-vis spectroscopy using different solvents. We observed that DAFCHO and FDACHO exhibit interesting photochromic properties when they are dissolved in chloroform and exposed to sunlight for 3, 5 and 10 min. The value of the energy band gap was calculated from the absorption spectra without irradiation Egap(optical). It was 2.50 eV for DAFCHO in chloroform solution, and it decreased to 2.34 eV when it is in films. For FDACHO, it was 2.41 eV in solution and 2.27 eV in film. HOMO (Highest Occupied Molecular Orbital), LUMO (Lowest Unoccupied Molecular Orbital) and Egap(electrochemical) values were obtained by electrochemical studies. The results indicate that the compounds can be considered as organic semiconductors since their values are 2.35 eV for DAFCHO and 2.06 eV for FDACHO. The structural and electronic properties of the compounds were corroborated with a DFT (Density Functional Theory) study.


Assuntos
Compostos de Anilina/química , Modelos Químicos , Modelos Moleculares , Polímeros/química , Teoria Quântica , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica
2.
J Chem Phys ; 131(12): 124126, 2009 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-19791871

RESUMO

This work presents a density functional study of neutral, cationic, and anionic sodium cluster heptamers. The cluster structures were optimized with the local density approximation as well as with the generalized gradient approximation. For the neutral and cationic clusters new unexpected isomers are found closed in energy to the well known ground state structures. In the case of the neutral heptamer the new isomer was first noticed by inspection of a first-principles Born-Oppenheimer molecular dynamics (BOMD) simulations at 300 K. A structure alignment algorithm is presented which facilitates the discovery of new structures from such BOMD simulations. With this algorithm the structural evolution of the two low-lying isomers of the neutral, cationic, and anionic heptamer was analyzed at different temperatures. This work demonstrates the capability of reasonably long (approximately 100 ps) first-principles BOMD simulations to explore the potential energy landscape of metallic clusters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA