Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 8: 750183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957276

RESUMO

Bovine genital campylobacteriosis (BGC) is a sexually transmitted disease that causes early reproductive failure in natural breeding cattle that are managed extensively. The aim of this study was to assess the BGC prevalence in Spain from 2011 to 2019 using data collected cross-sectionally from the diagnostic reports issued by the SALUVET veterinary diagnostic laboratory from a total of 5,182 breeding bulls from 1,950 herds managed under "dehesa" systems (large herds within fenced pastures and all-year breeding season) or mountain systems (smaller herds with seasonal breeding management and grazing in communal mountain pastures). Infection was detected by PCR in 7.7 and 12.2% of the bulls and herds tested, respectively. The "dehesa" herd management system (OR = 2.078, P = < 0.001, 95% CI = 1.55-1.77), bovine trichomonosis status of the herd (OR = 1.606, P = 0.004, 95% CI = 1.15-2.22), and bulls ≥3 years old (OR = 1.392, P = 0.04, 95% CI = 1.01-1.92) were identified as risk factors associated with Campylobacter fetus venerealis infection. We also studied the high-risk areas for circulation of the infection in extensive beef cattle herds in Spain, showing four significant clusters in "dehesa" areas in the south-western provinces of the country and a fifth cluster located in a mountain area in northern Spain. The results obtained in the present study indicate that BGC is endemic and widely distributed in Spanish beef herds. Specifically, "dehesa" herds are at greater risk for introduction of Cfv based on relatively high local prevalence of the infection and the use of specific management practices.

2.
Parasit Vectors ; 12(1): 517, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31685001

RESUMO

BACKGROUND: Bovine besnoitiosis, caused by the cyst-forming apicomplexan parasite Besnoitia besnoiti, is a chronic and debilitating cattle disease that continues to spread in Europe in the absence of control tools. In this scenario, in vitro culture systems are valuable tools to carry out drug screenings and to unravel host-parasite interactions. However, studies performed in bovine target cells are scarce. METHODS: The objective of the present study was to obtain primary bovine aortic endothelial cells (BAECs) and fibroblast cell cultures, target cells during the acute and the chronic stage of the disease, respectively, from healthy bovine donors. Afterwards, expression of surface (CD31, CD34 and CD44) and intracellular markers (vimentin and cytokeratin) was studied to characterize cell populations by flow cytometry. Next, the lytic cycle of B. besnoiti tachyzoites was studied in both target cells. Invasion rates (IRs) were determined by immunofluorescence at several time points post-infection, and proliferation kinetics were studied by quantitative PCR (qPCR). Finally, the influence of bovine viral diarrhea virus (BVDV) co-infection on the host cell machinery, and consequently on B. besnoiti invasion and proliferation, was investigated in BAECs. RESULTS: Morphology and cytometry results confirmed the endothelial and fibroblast origins. CD31 was the surface marker that best discriminated between BAECs and fibroblasts, since fibroblasts lacked CD31 labelling. Expression of CD34 was weak in low-passage BAECs and absent in high-passage BAECs and fibroblasts. Positive labelling for CD44, vimentin and cytokeratin was observed in both BAECs and fibroblasts. Regarding the lytic cycle of the parasite, although low invasion rates (approximately 3-4%) were found in both cell culture systems, more invasion was observed in BAECs at 24 and 72 hpi. The proliferation kinetics did not differ between BAECs and fibroblasts. BVDV infection favoured early Besnoitia invasion but there was no difference in tachyzoite yields observed in BVDV-BAECs compared to BAECs. CONCLUSIONS: We have generated and characterized two novel standardized in vitro models for Besnoitia besnoiti infection based on bovine primary target BAECs and fibroblasts, and have shown the relevance of BVDV coinfections, which should be considered in further studies with other cattle pathogens.


Assuntos
Doenças dos Bovinos/parasitologia , Coccidiose/veterinária , Células Endoteliais/parasitologia , Fibroblastos/parasitologia , Sarcocystidae/crescimento & desenvolvimento , Animais , Antígenos CD34/metabolismo , Bovinos , Coccidiose/parasitologia , Receptores de Hialuronatos/metabolismo , Estágios do Ciclo de Vida , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...