Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 259: 7-17, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29680064

RESUMO

Chronic non-communicable diseases (NCDs) are low-level inflammation processes affected by several factors including diet. It has been reported that mixed whole grain and legume consumption, e.g. corn and common bean, might be a beneficial combination due to its content of bioactive compounds. A considerable amount would be retained in the non-digestible fraction (NDF), reaching the colon, where microbiota produce short-chain fatty acids (SCFAs) and phenolic compounds (PC) with known anti-inflammatory effect. The aim of this study was to estimate the anti-inflammatory potential of fermented-NDF of corn-bean chips (FNDFC) in RAW 264.7 macrophages. After 24 h, FNDFC produced SCFAs (0.156-0.222 mmol/l), inhibited nitric oxide production > 80% and H2O2 > 30%, up-regulated anti-inflammatory cytokines (I-TAC, TIMP-1) > 2-fold, and produced angiostatic and protective factors against vascular/tissue damage, and amelioration of tumor necrosis factor signalling and inflammatory bowel disease. These results confirm the anti-inflammatory potential derived from healthy corn-bean chips.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Phaseolus/química , Zea mays/química , Animais , Biomarcadores/metabolismo , Colo/metabolismo , Colo/microbiologia , Culinária , Citocinas/metabolismo , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Inflamação/prevenção & controle , Camundongos , Óxido Nítrico/metabolismo , Phaseolus/metabolismo , Células RAW 264.7 , Ratos , Zea mays/metabolismo
2.
Plant Foods Hum Nutr ; 68(1): 65-71, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23322263

RESUMO

The objective of this work was to evaluate the effect of alkaline cooking on the oxidative stability of oil in corn flour. A central composite design was used to study the combined effect of lime concentration (%) and steep time (h) on peroxide value (PV); specific extinction coefficients at 232 and 270 nm (K232 and K270); and FTIR absorbance at 3009 cm(-1), 3444 cm(-1), and 3530 cm(-1) in oils from corn flour obtained by alkaline cooking. The results indicate that lime concentration and steep time affected the PV, K232, and K270. A decrease of 2.56 % was observed in the IR absorption bands, corresponding to the polyunsaturated fatty acids. The FTIR spectra also showed absorption bands related to the secondary oil oxidation products.


Assuntos
Álcalis , Culinária/métodos , Óleo de Milho/metabolismo , Ácidos Graxos Insaturados/metabolismo , Farinha , Peroxidação de Lipídeos , Zea mays/química , Compostos de Cálcio , Dieta , Humanos , Oxirredução , Óxidos , Sementes/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
J Food Sci ; 72(7): E389-98, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17995641

RESUMO

Volatile formation in milk subjected to pressure-assisted thermal processing (PATP) was investigated from a reaction kinetic analysis point of view to illustrate the advantages of this technology. The concentration of 27 volatiles of different chemical class in milk subjected to pressure, temperature, and time treatments was fitted to zero-, 1st-, and 2nd-order chemical reaction models. Temperature and pressure effects on rate constants were analyzed to obtain activation energy (E(a)) and activation volume (deltaV*) values. Hexanal, heptanal, octanal, nonanal, and decanal followed 1st-order kinetics with rate constants characterized by E(a) values decreasing with pressure reflecting negative deltaV* values. Formation of 2-methylpropanal, 2,3-butanedione, and hydrogen sulfide followed zero-order kinetics with rate constants increasing with temperature but with unclear pressure effects. E(a) values for 2-methylpropanal and 2,3-butanedione increased with pressure, that is, deltaV* > 0, whereas values for hydrogen sulfide remained constant, that is, deltaV* = 0. The concentration of all other volatiles, including methanethiol, remained unchanged in pressure-treated samples, suggesting large negative deltaV* values. The concentration of methyl ketones, including 2-pentanone, 2-hexanone, 2-heptanone, 2-octanone, 2-nonanone, 2-decanone, and 2-undecanone, was independent of pressure and pressure-holding time. PATP promoted the formation of few compounds, had no effect on some, and inhibited the formation of volatiles reported to be factors of the consumer rejection of "cooked" milk flavor. The kinetic behavior observed suggested that new reaction formation mechanisms were not likely involved in volatile formation in PATP milk. The application of the Le Chatelier principle frequently used to explain the high quality of pressure-treated foods, often with no supporting experimental evidence, was not necessary.


Assuntos
Ácidos Graxos Voláteis/análise , Manipulação de Alimentos/métodos , Leite/química , Paladar , Animais , Comportamento do Consumidor , Temperatura Alta , Humanos , Cinética , Leite/normas , Pressão , Fatores de Tempo , Volatilização
4.
J Dairy Sci ; 89(8): 2919-27, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16840607

RESUMO

Volatile sulfur compounds have been reported to be responsible for the sulfurous off-flavors generated during the thermal processing of milk; however, their analysis has been a challenge due to their high reactivity, high volatility, and low sensory threshold. In this study, reactive thiols were stabilized and the volatile sulfur compounds in milk were extracted by headspace solid-phase microextraction, and analyzed by gas chromatography and pulsed-flame photometric detection. Calibration curves for 7 sulfur-containing compounds were constructed in milk by the standard addition technique. Raw, pasteurized, and UHT milk samples with various fat contents were analyzed. Compared with raw and pasteurized samples, UHT milk contained substantially higher concentrations of hydrogen sulfide, methanethiol, carbon disulfide, dimethyl trisulfide, and di-methyl sulfoxide. The high odor activity values calculated for methanethiol and dimethyl trisulfide suggested that these 2 compounds, in addition to di-methyl sulfide reported in a previous study, could be the most important contributors to the sulfurous note in UHT milk.


Assuntos
Cromatografia Gasosa/métodos , Leite/química , Compostos de Enxofre/análise , Animais , Dissulfeto de Carbono/análise , Dimetil Sulfóxido/análise , Manipulação de Alimentos/métodos , Sulfeto de Hidrogênio/análise , Odorantes/análise , Compostos de Sulfidrila/análise , Sulfetos/análise , Compostos de Enxofre/química , Volatilização
5.
J Dairy Sci ; 88(11): 3764-72, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16230682

RESUMO

Many volatile compounds generated during the thermal processing of milk have been associated with cooked, stale, and sulfurous notes in milk and are considered as off-flavor by most consumers. A headspace solid-phase microextraction (HS-SPME)/gas chromatographic technique for the quantitative analysis of thermally derived off-flavor compounds was developed in this study. The extraction temperature, time, and sample amount were optimized using a randomized 2(3) central composite rotatable design with 2 central replicates and 2 replicates in each factorial point along with response surface methodology. Calibration curves were constructed in milk using the standard addition technique, and then used to quantify 20 off-flavor compounds in raw, pasteurized, and UHT milk samples with various fat contents. The concentrations of these volatiles in raw and pasteurized milk samples were not significantly different. However, dimethyl sulfide, 2-hexanone, 2-heptanone, 2-nonanone, 2-undecanone, 2-methylpropanal, 3-methylbutanal, heptanal, and decanal were found at higher concentrations in UHT milk as compared with raw and pasteurized milk samples. In addition, the concentration of methyl ketones was greater in UHT milk with higher fat content. The calculated odor activity values suggested that 2,3-butanedione, 2-heptanone, 2-nonanone, 2-methylpropanal, 3-methylbutanal, nonanal, decanal, and dimethyl sulfide could be important contributors to the off-flavor of UHT milk. The HS-SPME technique developed in this study is accurate and relatively simple, and can be used for the quantification of thermally derived off-flavor compounds in milk.


Assuntos
Cromatografia Gasosa/métodos , Temperatura Alta , Leite/química , Paladar , Animais , Gorduras/análise , Cetonas/análise , Odorantes/análise , Sensibilidade e Especificidade , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA