Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 19(39): e2302250, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259265

RESUMO

Cutting costs by progressively decreasing substrate thickness is a common theme in the crystalline silicon photovoltaic  industry for the last decades, since drastically thinner wafers would significantly reduce the substrate-related costs. In addition to the technological challenges concerning wafering and handling of razor-thin flexible wafers, a major bottleneck is to maintain high absorption in those thin wafers. For the latter, advanced light-trapping techniques become of paramount importance. Here we demonstrate that by applying state-of-the-art black-Si nanotexture produced by DRIE on thin uncommitted wafers, the maximum theoretical absorption (Yablonovitch's 4n2 absorption limit), that is, ideal light trapping, is reached with wafer thicknesses as low as 40, 20, and 10 µm when paired with a back reflector. Due to the achieved promising optical properties the results are implemented into an actual thin interdigitated back contacted solar cell. The proof-of-concept cell, encapsulated in glass, achieved a 16.4% efficiency with an JSC  = 35 mA cm- 2 , representing a 43% improvement in output power with respect to the reference polished cell. These results demonstrate the vast potential of black silicon nanotexture in future extremely-thin silicon photovoltaics.

2.
Phys Rev Lett ; 125(11): 117702, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976002

RESUMO

At present, ultraviolet sensors are utilized in numerous fields ranging from various spectroscopy applications via biotechnical innovations to industrial process control. Despite this, the performance of current UV sensors is surprisingly poor. Here, we break the theoretical one-photon-one-electron barrier and demonstrate a device with a certified external quantum efficiency above 130% in UV range without external amplification. The record high performance is obtained using a nanostructured silicon photodiode with self-induced junction. We show that the high efficiency is based on effective utilization of multiple carrier generation by impact ionization taking place in the nanostructures. While the results can readily have a significant impact on the UV-sensor industry, the underlying technological concept can be applied to other semiconductor materials, thereby extending above unity response to longer wavelengths and offering new perspectives for improving efficiencies beyond the Shockley-Queisser limit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...