Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 597(24): 3049-3060, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37994578

RESUMO

Inflammatory chemokines are often elevated in disease settings, where the largest group of CC-chemokines are the macrophage inflammatory proteins (MIP), which are promiscuous for the receptors CCR1 and CCR5. MIP chemokines, such as CCL3 and CCL5 are processed at the N terminus, which influences signaling in a highly diverse manner. Here, we investigate the signaling capacity of peptides corresponding to truncated N termini. These 3-10-residue peptides displayed weak potency but, surprisingly, retained their signaling on CCR1. In contrast, none of the peptides generated a signal on CCR5, but a CCL3-derived tetrapeptide was a positive modulator boosting the signal of several chemokine variants on CCR5. In conclusion, chemokine N termini can be mimicked to produce small CCR1-selective agonists, as well as CCR5-selective modulators.


Assuntos
Quimiocinas , Receptores de Quimiocinas , Quimiocina CCL3 , Quimiocina CCL4 , Receptores de Quimiocinas/agonistas , Receptores de Quimiocinas/metabolismo , Quimiocinas/farmacologia , Quimiocinas/metabolismo , Proteínas Inflamatórias de Macrófagos/química , Proteínas Inflamatórias de Macrófagos/metabolismo
2.
ACS Pharmacol Transl Sci ; 6(8): 1120-1128, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37588755

RESUMO

CXC chemokine receptors 1 (CXCR1) and 2 (CXCR2) have high sequence similarity and overlapping chemokine ligand profiles. Residue positions 3.32 and 7.39 are critical for signal transduction in the related CXCR4, and in these positions CXCR1 and CXCR2 contain oppositely charged residues (Lys3.32 and Glu7.39). Experimental and computed receptor structures reveal the possible formation of a salt bridge between transmembrane (TM) helices 3 and 7 via these two residues. To investigate the functional importance of Lys1173.32 and Glu2917.39 in CXCR1, along with the flanking Glu1183.33, we performed a signaling study on 16 CXCR1 mutants using two different CXCL8 isoforms. While single Ala-mutation (K1173.32A, E2917.39A) and charge reversal (K1173.32E, E2917.39K) resulted in nonfunctional receptors, double (K1173.32E-E2917.39K) and triple (K1173.32E-E1183.33A-E2917.39K) mutants rescued CXCR1 function. In contrast, the corresponding mutations did not affect the CXCR2 function to the same extent. Our findings show that the Lys3.32-Glu7.39 salt bridge between TM3 and -7 is functionally important for CXCR1 but not for CXCR2, meaning that signal transduction for these highly homologous receptors is not conserved.

3.
PLoS Pathog ; 18(3): e1010355, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271688

RESUMO

Human cytomegalovirus (HCMV) is a major pathogen in immunocompromised patients. The UL146 gene exists as 14 diverse genotypes among clinical isolates, which encode 14 different CXC chemokines. One genotype (vCXCL1GT1) is a known agonist for CXCR1 and CXCR2, while two others (vCXCL1GT5 and vCXCL1GT6) lack the ELR motif considered crucial for CXCR1 and CXCR2 binding, thus suggesting another receptor targeting profile. To determine the receptor target for vCXCL1GT5, the chemokine was probed in a G protein signaling assay on all 18 classical human chemokine receptors, where CXCR2 was the only receptor being activated. In addition, vCXCL1GT5 recruited ß-arrestin in a BRET-based assay and induced migration in a chemotaxis assay through CXCR2, but not CXCR1. In contrast, vCXCL1GT1 stimulated G protein signaling, recruited ß-arrestin and induced migration through both CXCR1 and CXCR2. Both vCXCL1GT1 and vCXCL1GT5 induced equally potent and efficacious migration of neutrophils, and ELR vCXCL1GT4 and non-ELR vCXCL1GT6 activated only CXCR2. In contrast to most human chemokines, the 14 UL146 genotypes have remarkably long C-termini. Comparative modeling using Rosetta showed that each genotype could adopt the classic chemokine core structure, and predicted that the extended C-terminal tail of several genotypes (including vCXCL1GT1, vCXCL1GT4, vCXCL1GT5, and vCXCL1GT6) forms a novel ß-hairpin not found in human chemokines. Secondary NMR shift and TALOS+ analysis of vCXCL1GT1 supported the existence of two stable ß-strands. C-terminal deletion of vCXCL1GT1 resulted in a non-functional protein and in a shift to solvent exposure for tryptophan residues likely due to destabilization of the chemokine fold. The results demonstrate that non-ELR chemokines can activate CXCR2 and suggest that the UL146 chemokines have unique C-terminal structures that stabilize the chemokine fold. Increased knowledge of the structure and interaction partners of the chemokine variants encoded by UL146 is key to understanding why circulating HCMV strains sustain 14 stable genotypes.


Assuntos
Quimiocinas CXC , Citomegalovirus , Neutrófilos , Movimento Celular , Quimiocinas CXC/genética , Citomegalovirus/genética , Genótipo , Humanos , Interleucina-8 , Neutrófilos/citologia , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8B/agonistas , Receptores de Interleucina-8B/genética
4.
Sci Signal ; 15(724): eabg7042, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258997

RESUMO

Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that anchors the second extracellular loop (ECL2) to the top of receptor transmembrane helices (TM) 4 and 5 and enables recognition of both shared and specific characteristics of interacting chemokines. This cluster was essential for the activation of several chemokine receptors. Furthermore, characteristic motifs of the ß1 strand and 30s loop make the two main CC-chemokine subgroups-the macrophage inflammatory proteins (MIPs) and monocyte chemoattractant proteins (MCPs)-differentially dependent on this cluster in the promiscuous receptors CCR1, CCR2, and CCR5. The cluster additionally enabled CCR1 and CCR5 to discriminate between closely related MIPs based on the N terminus of the chemokine. G protein signaling and ß-arrestin2 recruitment assays confirmed the importance of the conserved cluster in receptor discrimination of chemokine ligands. This extracellular site may facilitate the development of chemokine-related therapeutics.


Assuntos
Quimiocinas , Receptores de Quimiocinas , Quimiocinas/metabolismo , Ligantes , Estrutura Secundária de Proteína , Receptores CCR5/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Transdução de Sinais
5.
ChemMedChem ; 16(17): 2623-2627, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270165

RESUMO

The G protein-coupled receptor GPR183/EBI2, which is activated by oxysterols, is a therapeutic target for inflammatory and metabolic diseases where both antagonists and agonists are of potential interest. Using the piperazine diamide core of the known GPR183 antagonist (E)-3-(4-bromophenyl)-1-(4-(4-methoxybenzoyl)piperazin-1-yl)prop-2-en-1-one (NIBR189) as starting point, we identified and sourced 79 structurally related compounds that were commercially available. In vitro screening of this compound collection using a Ca2+ mobilization assay resulted in the identification of 10 compounds with agonist properties. To enable establishment of initial structure-activity relationship trends, these were supplemented with five in-house compounds, two of which were also shown to be GPR183 agonists. Taken together, our findings suggest that the agonist activity of this compound series is dictated by the substitution pattern of one of the two distal phenyl rings, which functions as a molecular efficacy-switch.


Assuntos
Descoberta de Drogas , Receptores Acoplados a Proteínas G , Humanos , Estrutura Molecular , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Relação Estrutura-Atividade
6.
Commun Biol ; 4(1): 569, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980979

RESUMO

Following the FDA-approval of the hematopoietic stem cell (HSC) mobilizer plerixafor, orally available and potent CXCR4 antagonists were pursued. One such proposition was AMD11070, which was orally active and had superior antagonism in vitro; however, it did not appear as effective for HSC mobilization in vivo. Here we show that while AMD11070 acts as a full antagonist, plerixafor acts biased by stimulating ß-arrestin recruitment while fully antagonizing G protein. Consequently, while AMD11070 prevents the constitutive receptor internalization, plerixafor allows it and thereby decreases receptor expression. These findings are confirmed by the successful transfer of both ligands' binding sites and action to the related CXCR3 receptor. In vivo, plerixafor exhibits superior HSC mobilization associated with a dramatic reversal of the CXCL12 gradient across the bone marrow endothelium, which is not seen for AMD11070. We propose that the biased action of plerixafor is central for its superior therapeutic effect in HSC mobilization.


Assuntos
Benzilaminas/farmacologia , Ciclamos/farmacologia , Mobilização de Células-Tronco Hematopoéticas/métodos , Receptores CXCR4/metabolismo , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacologia , Animais , Benzimidazóis/metabolismo , Benzimidazóis/farmacologia , Benzilaminas/metabolismo , Butilaminas/metabolismo , Butilaminas/farmacologia , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Ciclamos/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Feminino , Fator Estimulador de Colônias de Granulócitos , Células HEK293 , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Preparações Farmacêuticas/metabolismo , Receptores CXCR3/efeitos dos fármacos , Receptores CXCR3/metabolismo , Receptores CXCR4/efeitos dos fármacos , beta-Arrestinas/efeitos dos fármacos , beta-Arrestinas/metabolismo
7.
ACS Chem Biol ; 13(4): 881-886, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461034

RESUMO

CXC chemokine receptor 4 (CXCR4) is involved in multiple physiological and pathological processes, notably as a coreceptor for human immunodeficiency virus (HIV) cell entry. Its broad expression pattern and vital biological importance make CXCR4 a troublesome drug target, as disruption of the interaction with its endogenous ligand, CXC chemokine ligand 12 (CXCL12), has severe consequences. In fact, only one CXCR4 drug, the bicyclam antagonist and HIV entry inhibitor AMD3100 (Plerixafor/Mozobil), has been approved for clinical use, however only for stem cell mobilization-a consequence of CXCR4 antagonism. Here, we report the engineering of an efficacy switch mutation in CXCR4-F292A7.43 in the middle of transmembrane helix 7-that converted the antagonists AMD3100 and AMD11070 into partial agonists. As agonists on F292A CXCR4, AMD3100 and AMD11070 were less disruptive to CXCR4 signaling while they remained efficient inhibitors of HIV fusion. This demonstrates that small molecule CXCR4 agonists can have a therapeutic potential as HIV entry inhibitors.


Assuntos
Inibidores da Fusão de HIV/química , HIV-1/efeitos dos fármacos , Receptores CXCR4/efeitos dos fármacos , Fármacos Anti-HIV , Humanos , Engenharia de Proteínas/métodos , Receptores CXCR4/agonistas , Receptores CXCR4/antagonistas & inibidores
8.
Mol Pharm ; 15(4): 1488-1494, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29462563

RESUMO

The diffusion coefficient (also known as diffusivity) of an active pharmaceutical ingredient (API) is a fundamental physicochemical parameter that affects passive diffusion through biological barriers and, as a consequence, bioavailability and biodistribution. However, this parameter is often neglected, and it is quite difficult to find diffusion coefficients of small molecules of pharmaceutical relevance in the literature. The available methods to measure diffusion coefficients of drugs all suffer from limitations that range from poor sensitivity to high selectivity of the measurements or the need for dedicated instrumentation. In this work, a simple but reliable method based on time-resolved concentration measurements by UV-visible spectroscopy in an unstirred aqueous environment was developed. This method is based on spectroscopic measurement of the variation of the local concentration of a substance during spontaneous migration of molecules, followed by standard mathematical treatment of the data in order to solve Fick's law of diffusion. This method is extremely sensitive and results in highly reproducible data. The technique was also employed to verify the influence of the environmental characteristics (i.e., ionic strength and presence of complexing agents) on the diffusivity. The method can be employed in any research laboratory equipped with a standard UV-visible spectrophotometer and could become a useful and straightforward tool in order to characterize diffusion coefficients in physiological conditions and help to better understand the drug permeability process.


Assuntos
Preparações Farmacêuticas/química , Água/química , Difusão , Luz , Concentração Osmolar , Permeabilidade , Raios Ultravioleta
9.
Bioorg Med Chem ; 25(2): 646-657, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27939345

RESUMO

Here we report a series of close analogues of our recently published scaffold-based tripeptidomimetic CXCR4 antagonists, containing positively charged guanidino groups in R1 and R2, and an aromatic group in R3. While contraction/elongation of the guanidine carrying side chains (R1 and R2) resulted in loss of activity, introduction of bromine in position 1 on the naphth-2-ylmethyl moiety (R3) resulted in an EC50 of 61µM (mixture of diastereoisomers) against wild-type CXCR4; thus, the antagonistic activity of these tripeptidomimetics seems to be amenable to optimization of the aromatic moiety. Moreover, for analogues carrying a naphth-2-ylmethyl substituent, we observed that a Pictet-Spengler like cyclization side reaction depended on the nature of the R1 substituent.


Assuntos
Compostos Bicíclicos com Pontes/farmacologia , Peptidomiméticos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Compostos Bicíclicos com Pontes/síntese química , Compostos Bicíclicos com Pontes/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Peptidomiméticos/síntese química , Peptidomiméticos/química , Relação Estrutura-Atividade
10.
J Med Chem ; 58(20): 8141-53, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26397724

RESUMO

We here report an experimentally verified binding mode for the known tripeptidomimetic CXCR4 antagonist KRH-1636 (1). A limited SAR study based on the three functionalities of 1 was first conducted, followed by site-directed mutagenesis studies. The receptor mapping showed that both the potency and affinity of 1 were dependent on the transmembrane residues His(113), Asp(171), Asp(262), and His(281) and also suggested the involvement of Tyr(45) and Gln(200) (potency) and Tyr(116) and Glu(288) (affinity). Molecular docking of 1 to an X-ray structure of CXCR4 showed that the l-Arg guanidino group of 1 forms polar interactions with His(113) and Asp(171) and the (pyridin-2-ylmethyl)amino moiety is anchored by Asp(262) and His(281), whereas the naphthalene ring is tightly packed in a hydrophobic subpocket formed by the aromatic side chains of Trp(94), Tyr(45), and Tyr(116). The detailed picture of ligand-receptor interactions provided here will assist in structure-based design and further development of small-molecule peptidomimetic CXCR4 antagonists.


Assuntos
Arginina/análogos & derivados , Piridinas/farmacologia , Receptores CXCR4/antagonistas & inibidores , Animais , Anticorpos Monoclonais/metabolismo , Arginina/farmacocinética , Arginina/farmacologia , Ligação Competitiva/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Humanos , Proteínas de Membrana/biossíntese , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/farmacologia , Piridinas/farmacocinética , Receptores CXCR4/genética , Relação Estrutura-Atividade , Tioureia/análogos & derivados , Tioureia/química , Tioureia/farmacologia , Difração de Raios X
11.
Future Med Chem ; 7(10): 1261-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26144264

RESUMO

Over the last 5 years, X-ray structures of CXCR4 in complex with three different ligands (the small-molecule antagonist IT1t, the polypeptide antagonist CVX15 and the viral chemokine antagonist vMIP-II) have been released. In addition to the inherent scientific value of these specific X-ray structures, they provide a reliable structural foundation for studies of the molecular interactions between CXCR4 and its key peptide ligands (CXCL12 and HIV-1 gp120), and serve as valuable templates for further development of small-molecule CXCR4 antagonists with therapeutic potential. We here review recent computational studies of the molecular interactions between CXCR4 and its peptide ligands - based on the X-ray structures of CXCR4 - and the current status of small-molecule peptide and peptidomimetic CXCR4 antagonists.


Assuntos
Peptídeos/química , Peptídeos/farmacologia , Peptidomiméticos/química , Peptidomiméticos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Desenho de Fármacos , Humanos , Modelos Moleculares , Receptores CXCR4/química , Receptores CXCR4/metabolismo
12.
Bioorg Med Chem ; 22(17): 4759-69, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082513

RESUMO

Structure-activity relationship studies of the cyclopentapeptide CXCR4 antagonists (cyclo(-l-/d-Arg(1)-Arg(2)-2-Nal(3)-Gly(4)-d-Tyr(5)-)) suggest that the l-/d-Arg(1)-Arg(2)-2-Nal(3) tripeptide sequence contained within these cyclopentapeptides serves as a recognition motif for peptidic CXCR4 antagonists. Starting by dissecting the cyclopentapeptide structure and reintroducing cyclic constraints in a stepwise manner, we here report a novel class of scaffold-based tripeptidomimetic CXCR4 antagonists based on the d-Arg-Arg-2-Nal motif. Biological testing of the prototype compounds showed that they represent new peptidomimetic hits; importantly, the modular nature of the scaffold provides an interesting starting point for future ligand optimization.


Assuntos
Desenho de Fármacos , Peptídeos Cíclicos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Conformação Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Receptores CXCR4/metabolismo , Relação Estrutura-Atividade
13.
Org Biomol Chem ; 11(47): 8202-8, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150741

RESUMO

The cyclopentapeptide CXCR4 antagonist FC131 (cyclo(-Arg(1)-Arg(2)-2-Nal(3)-Gly(4)-D-Tyr(5)-), 2; 2-Nal = 3-(2-naphthyl)alanine) represents an excellent starting point for development of novel drug-like ligands with therapeutic potential in HIV, cancer, stem-cell mobilization, inflammation, and autoimmune diseases. While the structure-activity relationships for Arg(1), Arg(2), and Gly(4) are well established, less is understood about the roles of the aromatic residues 2-Nal(3) and D-Tyr(5). Here we report further structure-activity relationship studies of these two positions, which showed that (i) the distal aromatic ring of the 2-Nal(3) side chain is required in order to maintain high potency and (ii) replacement of D-Tyr(5) with conformationally constrained analogues results in significantly reduced activity. However, a simplified analogue that contained Gly instead of D-Tyr(5) was only 13-fold less potent than 2, which means that the D-Tyr(5) side chain is dispensable. These findings were rationalized based on molecular docking, and the collective structure-activity data for the cyclopentapeptides suggest that appropriately designed Arg(2)-2-Nal(3) dipeptidomimetics have potential as CXCR4 antagonists.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptores CXCR4/antagonistas & inibidores , Humanos , Modelos Moleculares , Conformação Molecular , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
14.
J Med Chem ; 55(22): 10287-91, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23043442

RESUMO

In the absence of an experimentally determined binding mode for the cyclopentapeptide CXCR4 antagonists, we have rationally designed conformationally constrained analogues to further probe the small peptide binding pocket of CXCR4. Two different rigidification strategies were employed, both resulting in highly potent ligands (9 and 13). The information provided by this cyclopentapeptide ligand series will be very valuable in the development of novel peptidomimetic CXCR4 antagonists.


Assuntos
Desenho de Fármacos , Peptídeos Cíclicos/farmacologia , Peptidomiméticos , Receptores CXCR4/antagonistas & inibidores , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Peptídeos Cíclicos/síntese química , Conformação Proteica , Receptores CXCR4/metabolismo
15.
Chem Biol Drug Des ; 67(5): 346-54, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16784459

RESUMO

The finding that the chemokine receptor CXCR4 is involved in T-cell HIV entry has encouraged the development of antiretroviral drugs targeting this receptor. Additional evidence that CXCR4 plays a crucial role in both angiogenesis and metastasis provides further motivation for the development of a CXCR4 inhibitor for therapeutic applications in oncology. To facilitate the design of such ligands, we have investigated the possible binding modes for cyclopentapeptide CXCR4 antagonists by docking 11 high/medium affinity cyclopentapeptides to a developed three-dimensional model of the CXCR4 G-protein-coupled receptor's transmembrane region. These ligands, expected to bind in the same mode to the receptor, were docked in the previously deduced receptor-bound conformation [Våbenøet al., in press; doi 10.1002/bip.20508]. Ligand-receptor complexes were generated using an automated docking procedure that allowed ligand flexibility. By comparing the resulting ligand poses, only two binding modes common for all 11 compounds were identified. Inspection of these two ligand-receptor complexes identified several CXCR4 contact residues shown by mutation to be interaction sites for ligands and important for HIV gp120 binding. Thus, the results provide further insight into the mechanism by which these cyclopentapeptides block HIV entry as well as a basis for rational design of CXCR4 mutants to map potential contacts with small peptide ligands.


Assuntos
Peptídeos Cíclicos/metabolismo , Receptores CXCR4/antagonistas & inibidores , Sequência de Aminoácidos , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Mutação Puntual , Estrutura Secundária de Proteína , Receptores CXCR4/química , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Rodopsina/química , Alinhamento de Sequência
16.
Biopolymers ; 84(5): 459-71, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16552740

RESUMO

Because of its involvement in HIV entry, the chemokine receptor CXCR4 is an attractive target for antiretroviral drugs. Despite the large number of CXCR4 inhibitors studied, the 3D pharmacophore for binding to CXCR4 remains elusive, mainly as a result of conformational flexibility inherent in the identified ligands. In the present study, an exhaustive systematic exploration of the conformational space for a series of analogs of FC131, a cyclopentapeptide CXCR4 antagonist, has been performed. By comparing the resulting low-energy conformations using different sets of atoms, specific conformational features common only to the high/medium affinity compounds were identified. These features included the spatial arrangement of three pharmacophoric side chains as well as the orientation of a specific backbone amide bond. Together these features represent a minimalistic 3D pharmacophore model for binding of the cyclopentapeptide antagonists to CXCR4. The model enables rationalization of the experimental affinity data for this class of compounds as well as for the peptidomimetic KRH-1636.


Assuntos
Fármacos Anti-HIV/química , Oligopeptídeos/química , Peptídeos Cíclicos/química , Receptores CXCR4/antagonistas & inibidores , Humanos , Modelos Moleculares , Conformação Proteica , Relação Quantitativa Estrutura-Atividade
17.
Pharm Res ; 23(3): 483-92, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16489544

RESUMO

PURPOSE: The aim of this study was to develop a three-dimensional quantitative structure-activity relationship (QSAR) model for binding of tripeptides and tripeptidomimetics to hPEPT1 based on a series of 25 diverse tripeptides. METHODS: VolSurf descriptors were generated and correlated with binding affinities by multivariate data analysis. The affinities for hPEPT1 of the tripeptides and tripeptidomimetics were determined experimentally by use of Caco-2 cell monolayers. RESULTS: The Ki-values of the 25 tripeptides and tripeptidomimetics ranged from 0.15 to 25 mM and the structural diversity of the compounds was described by VolSurf descriptors. A QSAR model that correlated the VolSurf descriptors of the tripeptides with their experimental binding affinity for hPEPT1 was established. CONCLUSION: Structural information on tripeptide properties influencing the binding to hPEPT1 was extracted from the QSAR model. This information may contribute to the drug design process of tripeptides and tripeptidomimetics where hPEPT1 is targeted as an absorptive transporter for improvement of intestinal absorption. To our knowledge, this is the first time a correlation between VolSurf descriptors and binding affinities for hPEPT1 has been reported.


Assuntos
Modelos Biológicos , Peptídeos/metabolismo , Relação Quantitativa Estrutura-Atividade , Simportadores/metabolismo , Células CACO-2 , Desenho de Fármacos , Humanos , Mucosa Intestinal/metabolismo , Transportador 1 de Peptídeos , Peptídeos/química , Ligação Proteica , Conformação Proteica , Simportadores/química
18.
Bioorg Med Chem ; 13(6): 1977-88, 2005 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15727852

RESUMO

The aim of the present study was to develop a computational method aiding the design of dipeptidomimetic pro-moieties targeting the human intestinal di-/tripeptide transporter hPEPT1. First, the conformation in which substrates bind to hPEPT1 (the bioactive conformation) was identified by conformational analysis and 2D dihedral driving analysis of 15 hPEPT1 substrates, which suggested that psi(1) approximately 165 degrees , omega(1) approximately 180 degrees , and phi(2) approximately 280 degrees were descriptive of the bioactive conformation. Subsequently, the conformational energy required to change the peptide backbone conformation (DeltaE(bbone)) from the global energy minimum conformation to the identified bioactive conformation was calculated for 20 hPEPT1 targeted model prodrugs with known K(i) values. Quantitatively, an inverse linear relationship (r(2)=0.81, q(2)=0.80) was obtained between DeltaE(bbone) and log1/K(i), showing that DeltaE(bbone) contributes significantly to the experimentally observed affinity for hPEPT1 ligands. Qualitatively, the results revealed that compounds classified as high affinity ligands (K(i)<0.5 mM) all have a calculated DeltaE(bbone)<1 kcal/mol, whereas medium and low-affinity compounds (0.5 mM

Assuntos
Desenho de Fármacos , Intestinos/química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Simportadores/química , Simportadores/metabolismo , Aminação , Dipeptídeos/síntese química , Dipeptídeos/química , Dipeptídeos/farmacologia , Humanos , Ligantes , Estrutura Molecular , Transportador 1 de Peptídeos , Pró-Fármacos/síntese química , Água/química , beta-Lactamas/síntese química , beta-Lactamas/química , beta-Lactamas/farmacologia
19.
J Med Chem ; 47(19): 4755-65, 2004 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-15341490

RESUMO

Five dipeptidomimetic-based model prodrugs containing ketomethylene amide bond replacements were synthesized from readily available alpha,beta-unsaturated gamma-ketoesters. The model drug (BnOH) was attached to the C-terminus or to one of the side chain positions of the dipeptidomimetic. The stability, the affinity for the di-/tripeptide transporter hPEPT1, and the transepithelial transport properties of the model prodrugs were investigated. ValPsi[COCH(2)]Asp(OBn) was the compound with highest chemical stability in buffers at pH 6.0 and 7.4, with half-lives of 190 and 43 h, respectively. All five compounds showed high affinity for hPEPT1 (K(i) values < 1 mM), and PhePsi[COCH(2)]Asp(OBn) and ValPsi[COCH(2)]Asp(OBn) had the highest affinities with K(i) values of 68 and 19 microM, respectively. An hPEPT1-mediated transport component was demonstrated for the transepithelial transport of three compounds, a finding that was corroborated by hPEPT1-mediated intracellular uptake. The results indicate that the stabilized Phe-Asp and Val-Asp derivatives are promising pro-moieties in a prodrug approach targeting hPEPT1.


Assuntos
Proteínas de Transporte/metabolismo , Desenho de Fármacos , Mucosa Intestinal/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Simportadores , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Humanos , Concentração Inibidora 50 , Intestinos/efeitos dos fármacos , Metilação , Estrutura Molecular , Transportador 1 de Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Pró-Fármacos/síntese química , Pró-Fármacos/farmacocinética , Relação Estrutura-Atividade
20.
J Med Chem ; 47(4): 1060-9, 2004 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-14761208

RESUMO

A series of five Phe-Gly dipeptidomimetics containing different amide bond replacements have been synthesized in a facile way from the readily available unsaturated ketoester 1, and their affinities for the di-/tripeptide transporters hPEPT1 (Caco-2 cells) and rPEPT2 (SKPT cells) were tested. The compounds contained the amide bond isosteres ketomethylene (2a), (R)- and (S)-hydroxyethylidene (3a and 4a), and (R)- and (S)-hydroxyethylene (5a and 6a) to provide information on the conformational and stereochemical requirements for hPEPT1 and rPEPT2 affinity. The affinity studies showed that for rPEPT2 there is no significant difference in affinity between the ketomethylene isostere 2a and the natural substrate Phe-Gly (K(i) values of 18.8 and 14.6 microM, respectively). Also the affinities for hPEPT1 are in the same range (K(i) values of 0.40 and 0.20 mM, respectively). This corroborates earlier findings that the amide bond as such is not essential for binding to PEPTX, but the results also reveal possible differences in the binding of ketomethylene isosteres to hPEPT1 and rPEPT2. The trans-hydroxyethylidene and hydroxyethylene isosteres proved to be poor substrates for PEPTX. These results provide new information about the importance of flexibility and of the stereochemistry at the C(4)-position for this class of compounds. Furthermore, the intracellular uptake of 2a-4a in Caco-2 cells was investigated, showing a 3-fold reduction of the uptake of 2a in the presence of the competetive inhibitor Gly-Pro, indicating contribution from an active transport component. No active uptake of 3a and 4a was observed. Transepithelial transport studies also indicated active transport of 2a across Caco-2 monolayers.


Assuntos
Caproatos/síntese química , Proteínas de Transporte/metabolismo , Dipeptídeos/química , Oligopeptídeos/metabolismo , Simportadores/metabolismo , Animais , Transporte Biológico , Caproatos/química , Caproatos/farmacologia , Linhagem Celular , Dipeptídeos/metabolismo , Desenho de Fármacos , Humanos , Mimetismo Molecular , Transportador 1 de Peptídeos , Ratos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...