Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(22): eaaz4126, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32523988

RESUMO

The Mre11 nuclease is involved in early responses to DNA damage, often mediated by its role in DNA end processing. MRE11 mutations and aberrant expression are associated with carcinogenesis and cancer treatment outcomes. While, in recent years, progress has been made in understanding the role of Mre11 nuclease activities in DNA double-strand break repair, their role during replication has remained elusive. The nucleoside analog gemcitabine, widely used in cancer therapy, acts as a replication chain terminator; for a cell to survive treatment, gemcitabine needs to be removed from replicating DNA. Activities responsible for this removal have, so far, not been identified. We show that Mre11 3' to 5' exonuclease activity removes gemcitabine from nascent DNA during replication. This contributes to replication progression and gemcitabine resistance. We thus uncovered a replication-supporting role for Mre11 exonuclease activity, which is distinct from its previously reported detrimental role in uncontrolled resection in recombination-deficient cells.


Assuntos
Proteínas de Ligação a DNA , Desoxicitidina , DNA , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Exonucleases/genética , Exonucleases/metabolismo , Gencitabina
2.
J Pharmacol Exp Ther ; 299(3): 1161-8, 2001 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11714908

RESUMO

Therapeutic value of the alkylating agent ifosfamide has been limited by major side effects including encephalopathy. Although the underlying biochemical processes of the neurotoxic side effects are still unclear, they could be attributed to metabolites rather than to ifosfamide itself. In the present study, the effects of selected ifosfamide metabolites on indices of neuronal activity have been investigated, in particular for S-carboxymethylcysteine (SCMC) and thiodiglycolic acid (TDGA). Because of structural similarities of SCMC with glutamate, the Ca(2+)(i) response of single mouse cortical neurons to SCMC and TDGA was investigated. SCMC, but not TDGA, evoked a robust increase in Ca(2+)(i) concentration that could be abolished by the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), but only partly diminished by the N-methyl-D-aspartate receptor antagonist 10,11-dihydro-5-methyl-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK=801). Cyclothiazide (CYZ), used to prevent AMPA/kainate receptor desensitization, potentiated the response to SCMC. Because activation of AMPA/kainate receptors is known to induce proton influx, the intracellular pH (pH(i)) response to SCMC was investigated. SCMC caused a concentration-dependent acidification that was amplified by CYZ. Since H(+)/monocarboxylate transporter (MCT) activity leads to similar cellular acidification, we tested its potential involvement in the pH(i) response. Application of the lactate transport inhibitor quercetin diminished the pH(i) response to SCMC and TDGA by 43 and 51%, respectively, indicating that these compounds may be substrates of MCTs. Taken together, this study indicates that hitherto apparently inert ifosfamide metabolites, in particular SCMC, activate AMPA/kainate receptors and induce cellular acidification. Both processes could provide the biochemical basis of the observed ifosfamide-associated encephalopathy.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Ifosfamida/farmacologia , Neurônios/efeitos dos fármacos , Receptores de AMPA/metabolismo , Receptores de Ácido Caínico/metabolismo , Animais , Antineoplásicos Alquilantes/metabolismo , Transporte Biológico , Carbocisteína/farmacologia , Células Cultivadas , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Ácido Glutâmico/metabolismo , Ifosfamida/metabolismo , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neurônios/metabolismo , Receptores de AMPA/agonistas
3.
Eur J Clin Pharmacol ; 54(5): 437-41, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9754990

RESUMO

OBJECTIVE: To determine the variability of coumarin 7- and 3-hydroxylation in a human population and to evaluate the evidence for the existence of genetic polymorphism in these pathways. 7-Hydroxylation of coumarin is considered to be a detoxication pathway, whilst 3-hydroxylation, which predominates in rats, leads to hepatotoxicity in the rat. Coumarin metabolic phenotypes could aid in refining the risk evaluation for humans of dietary and environmental exposure to coumarin and for the chronic use of coumarin in high doses as a drug to treat lymphoedema and certain cancers. METHODS: Healthy male and female Jordanian volunteers (n = 103) were administered 2 mg coumarin by mouth and collected their 0-8-h urines. These, together with pre-dose blank urines, were analysed by selected-ion monitoring gas chromatography mass spectrometry for their content of the coumarin metabolites 7-hydroxycoumarin (70HC) and 2-hydroxyphenylacetic acid (2OHPAA), the latter arising from the 3-hydroxylation pathway. RESULTS: After coumarin administration, excretion of both 70HC and 2OHPAA was highly variable. A coumarin metabolic ratio (2OHPAA/7OHC) was suggestive of polymorphism. At least one subject had a metabolic response similar to an individual known to be both phenotypically and genotypically (CYP2A6 gene) 7-hydroxylation-deficient. CONCLUSION: In the light of the finding of high variability and possible polymorphism in both the 7- and 3-hydroxylation of coumarin in a human population. we recommend a reappraisal of the risk evaluation of human exposure to coumarin, particularly in pharmaceutical doses.


Assuntos
Hidrocarboneto de Aril Hidroxilases , Cumarínicos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Adulto , Cumarínicos/efeitos adversos , Citocromo P-450 CYP2A6 , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Variação Genética , Humanos , Hidroxilação , Jordânia , Masculino , Fenilacetatos/urina , Polimorfismo Genético , Umbeliferonas/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA