Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38740330

RESUMO

INTRODUCTION: Obesity is a global pandemic associated with various cardio-metabolic and psychiatric disorders. Neurocognitive and functional deficits have been associated with several somatic and psychiatric disorders. Adiposity-related inflammation has recently emerged as a key risk factor for neurocognitive and functional impairments. This prospective transdiagnostic study aimed to investigate the role of adiposity-related inflammatory markers in neurocognitive and functional outcomes associated with weight changes. METHODS: Peripheral blood inflammatory and oxidative stress biomarkers and neurocognitive and functional performance were assessed twice over 1 year in 165 individuals, including 30 with schizophrenia, 42 with bipolar disorder, 35 with major depressive disorder, 30 with type 2 diabetes mellitus (T2DM), and 28 healthy controls. Participants were stratified by body mass index into categories of type 2 obesity (T2OB; n=30), type 1 obesity (T1OB; n=42), overweight (OW; n=53), and average weight (NW; n=40). Mixed one-way analysis of covariance and linear and binary logistic regression analyses were performed. RESULTS: Compared with NW, T2OB and T1OB were significantly associated with impaired neurocognitive and functional performance (p<0.01; η2p=0.06-0.12) and higher levels of C-reactive protein and platelets (PLT) (p<0.01; η2p=0.08-0.16), with small-to-moderate effect sizes. IL-6, IL-10, and PLT were key factors for detecting significant weight changes in T1OB and T2OB over time. Regression models revealed that inflammatory and oxidative stress biomarkers and cellular adhesion molecules were significantly associated with neurocognitive and functional performance (p<0.05). DISCUSSION: Obesity is characterized by neurocognitive and functional impairments alongside low-grade systemic inflammation. Adiposity-related inflammatory biomarkers may contribute to neurocognitive and functional decline in individuals with T2DM and psychiatric disorders. Our data suggest that these biomarkers facilitate the identification of specific subgroups of individuals at higher risk of developing obesity.

3.
Free Radic Biol Med ; 213: 19-35, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38220031

RESUMO

Overloaded glucose levels in several metabolic diseases such as type 2 diabetes (T2D) can lead to mitochondrial dysfunction and enhanced production of reactive oxygen species (ROS). Oxidative stress and altered mitochondrial homeostasis, particularly in the cardiovascular system, contribute to the development of chronic comorbidities of diabetes. Diabetes-associated hyperglycemia and dyslipidemia can directly damage vascular vessels and lead to coronary artery disease or stroke, and indirectly damage other organs and lead to kidney dysfunction, known as diabetic nephropathy. The new diabetes treatments include Na+-glucose cotransporter 2 inhibitors (iSGLT2) and glucagon-like 1 peptide receptor agonists (GLP-1RA), among others. The iSGLT2 are oral anti-diabetic drugs, whereas GLP-1RA are preferably administered through subcutaneous injection, even though GLP-1RA oral formulations have recently become available. Both therapies are known to improve both carbohydrate and lipid metabolism, as well as to improve cardiovascular and cardiorenal outcomes in diabetic patients. In this review, we present an overview of current knowledge on the relationship between oxidative stress, mitochondrial dysfunction, and cardiovascular therapeutic benefits of iSGLT2 and GLP-1RA. We explore the benefits, limits and common features of the treatments and remark how both are an interesting target in the prevention of obesity, T2D and cardiovascular diseases, and emphasize the lack of a complete understanding of the underlying mechanism of action.


Assuntos
Doenças Cardiovasculares , Sistema Cardiovascular , Diabetes Mellitus Tipo 2 , Doenças Mitocondriais , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Estresse Oxidativo , Glucose/farmacologia , Doenças Mitocondriais/tratamento farmacológico , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Hipoglicemiantes/farmacologia
4.
Rev Endocr Metab Disord ; 25(2): 325-337, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37993559

RESUMO

Daily rhythms of metabolic function are supported by molecular circadian clock systems that are strongly regulated by feeding and fasting. Intermittent fasting diets have been associated with weight loss and improved metabolism. However, the effects of time-restricted eating (TRE) on glycemic parameters are still under debate. In this review, we aim to systematically analyze the effects of TRE on glycemic parameters. We searched on PubMed, EMBASE, and the Cochrane Library for controlled studies in which subjects followed TRE for at least 4 weeks. 20 studies were included in the qualitative systematic review, and 18 studies (n = 1169 subjects) were included in the meta-analysis. Overall, TRE had no significant effect on fasting glucose (Hedges's g = -0.08; 95% CI:-0.31,0.16; p = 0.52), but it did reduce HbA1c levels (Hedges's g = -0.27; 95% CI: -0.47, -0.06; p = 0.01). TRE significantly reduced fasting insulin (Hedges's g = -0.40; 95% CI: -0.73,-0.08; p = 0.01) and showed a tendency to decrease HOMA-IR (Hedges's g = -0.32; 95% CI:-0.66,0.02; p = 0.06). Interestingly, a cumulative analysis showed that the beneficial effects of TRE regarding glucose levels were less apparent as studies with later TRE windows (lTRE) were being included. Indeed, a subgroup analysis of the early TRE (eTRE) studies revealed that fasting glucose was significantly reduced by eTRE (Hedges's g = -0.38; 95% CI:-0.62, -0.14; p < 0.01). Our meta-analysis suggests that TRE can reduce HbA1c and insulin levels, and that timing of food intake is a crucial factor in the metabolic benefit of TRE, as only eTRE is capable of reducing fasting glucose levels in subjects with overweight or obesity.PROSPERO registration number CRD42023405946.


Assuntos
Glucose , Controle Glicêmico , Humanos , Hemoglobinas Glicadas , Insulina , Ingestão de Alimentos
6.
Biomed Pharmacother ; 167: 115537, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37738799

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease (CLD) worldwide and inflammation is key to its progression/resolution. As we have previously described that rilpivirine (RPV) is hepatoprotective in murine models of CLD, here we determine the molecular mechanisms involved, focusing on its anti-inflammatory and immunomodulating properties. They were evaluated in vitro (human hepatic cell lines of the major hepatic cell types), in vivo (liver samples from a murine nutritional model of NAFLD) and ex vivo (peripheral blood mononuclear cells -PBMC- from patients with CLD). Transcriptomic analysis of liver samples from NAFLD mice showed RPV down-regulated biological processes associated with the inflammatory response (NF-κB/IκB signaling and mitogen-activated protein kinase -MAPK- activity) and leukocyte chemotaxis and migration. We observed a decrease in Adgre1 and Ccr2 expression and in the number of CCR2 + cells in the periportal areas of RPV-treated NAFLD mice. This RPV-induced effect on the CCL2/CCR2 axis was confirmed in vitro. A similar result was also obtained with CXCL10/IP10, one of the main chemokines in the liver. RPV also diminished activation of MAP kinases p38 and JNK. In addition, RPV inhibited the NLRP3 inflammasome pathway in vitro, decreasing NLRP3 protein expression, caspase-1 activation and IL-1ß gene expression. RPV was also proven anti-inflammatory in PBMC from patients with CLD treated ex vivo. In conclusion, beyond its well-described role in antiretroviral therapy, RPV manifests anti-inflammatory and immunoregulatory effects, a finding that could be of great relevance for the search of novel targets or repositioning strategies for CLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Leucócitos Mononucleares/metabolismo , Rilpivirina/metabolismo , Rilpivirina/farmacologia , Rilpivirina/uso terapêutico , Fígado , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , NF-kappa B/metabolismo
7.
Redox Biol ; 66: 102849, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591012

RESUMO

OBJECTIVE: Type 2 diabetes (T2D) is linked to metabolic, mitochondrial and inflammatory alterations, atherosclerosis development and cardiovascular diseases (CVDs). The aim was to investigate the potential therapeutic benefits of GLP-1 receptor agonists (GLP-1 RA) on oxidative stress, mitochondrial respiration, leukocyte-endothelial interactions, inflammation and carotid intima-media thickness (CIMT) in T2D patients. RESEARCH DESIGN AND METHODS: Type 2 diabetic patients (255) and control subjects (175) were recruited, paired by age and sex, and separated into two groups: without GLP-1 RA treatment (196) and treated with GLP-1 RA (59). Peripheral blood polymorphonuclear leukocytes (PMNs) were isolated to measure reactive oxygen species (ROS) production by flow cytometry and oxygen consumption with a Clark electrode. PMNs were also used to assess leukocyte-endothelial interactions. Circulating levels of adhesion molecules and inflammatory markers were quantified by Luminex's technology, and CIMT was measured as surrogate marker of atherosclerosis. RESULTS: Treatment with GLP-1 RA reduced ROS production and recovered mitochondrial membrane potential, oxygen consumption and MPO levels. The velocity of leukocytes rolling over endothelial cells increased in PMNs from GLP-1 RA-treated patients, whereas rolling and adhesion were diminished. ICAM-1, VCAM-1, IL-6, TNFα and IL-12 protein levels also decreased in the GLP-1 RA-treated group, while IL-10 increased. CIMT was lower in GLP-1 RA-treated T2D patients than in T2D patients without GLP-1 RA treatment. CONCLUSIONS: GLP-1 RA treatment improves the redox state and mitochondrial respiration, and reduces leukocyte-endothelial interactions, inflammation and CIMT in T2D patients, thereby potentially diminishing the risk of atherosclerosis and CVDs.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Células Endoteliais , Receptor do Peptídeo Semelhante ao Glucagon 1 , Espessura Intima-Media Carotídea , Espécies Reativas de Oxigênio , Aterosclerose/tratamento farmacológico , Inflamação/tratamento farmacológico , Leucócitos , Endotélio , Peptídeo 1 Semelhante ao Glucagon
8.
Artigo em Inglês | MEDLINE | ID: mdl-37327846

RESUMO

INTRODUCTION: Neurocognitive impairment is a transdiagnostic feature across several psychiatric and cardiometabolic conditions. The relationship between inflammatory and lipid metabolism biomarkers and memory performance is not fully understood. This study aimed to identify peripheral biomarkers suitable to signal memory decline from a transdiagnostic and longitudinal perspective. METHODS: Peripheral blood biomarkers of inflammation, oxidative stress and lipid metabolism were assessed twice over a 1-year period in 165 individuals, including 30 with schizophrenia (SZ), 42 with bipolar disorder (BD), 35 with major depressive disorder (MDD), 30 with type 2 diabetes mellitus (T2DM), and 28 healthy controls (HCs). Participants were stratified by memory performance quartiles, taking as a reference their global memory score (GMS) at baseline, into categories of high memory (H; n = 40), medium to high memory (MH; n = 43), medium to low memory (ML; n = 38) and low memory (L; n = 44). Exploratory and confirmatory factorial analysis, mixed one-way analysis of covariance and discriminatory analyses were performed. RESULTS: L group was significantly associated with higher levels of tumor necrosis factor-alpha (TNF-α) and lower levels of apolipoprotein A1 (Apo-A1) compared to those from the MH and H groups (p < 0.05; η2p = 0.06-0.09), with small to moderate effect sizes. Moreover, the combination of interleukin-6 (IL-6), TNF-α, c-reactive protein (CRP), Apo-A1 and Apo-B compounded the transdiagnostic model that best discriminated between groups with different degrees of memory impairment (χ2 = 11.9-49.3, p < 0.05-0.0001). CONCLUSIONS: Inflammation and lipid metabolism seem to be associated with memory across T2DM and severe mental illnesses (SMI). A panel of biomarkers may be a useful approach to identify individuals at greater risk of neurocognitive impairment. These findings may have a potential translational utility for early intervention and advance precision medicine in these disorders.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Humanos , Fator de Necrose Tumoral alfa , Metabolismo dos Lipídeos , Biomarcadores , Inflamação , Transtornos da Memória
9.
Antioxid Redox Signal ; 39(4-6): 278-320, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36641637

RESUMO

Significance: Type 2 diabetes mellitus, which is related to oxidative stress and mitochondrial dysfunction, is one of the most prevalent diseases in the world. In the past decade, alterations in autophagy have been shown to play a fundamental role in the development and control of type 2 diabetes. Further, mitophagy has been recognized as a key player in eliminating dysfunctional mitochondria in this disease. Recent Advances: Recently, much progress has been made in understanding the molecular events associated with oxidative stress, mitochondrial dysfunction, and alterations in autophagy and mitophagy in type 2 diabetes. Critical Issues: Despite increasing evidence of a relationship between mitochondrial dysfunction, oxidative stress, and alterations of autophagy and mitophagy and their role in the pathophysiolology of type 2 diabetes, effective therapeutic strategies to combat the disease through targeting mitochondria, autophagy, and mitophagy are yet to be implemented. Future Directions: This review provides a wide perspective of the existing literature concerning the complicated interplay between autophagy, mitophagy, and mitochondrial dysfunction in type 2 diabetes. Further, potential therapeutic targets based on these molecular mechanisms are explored. Antioxid. Redox Signal. 39, 278-320.


Assuntos
Diabetes Mellitus Tipo 2 , Mitofagia , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Mitocôndrias/metabolismo , Autofagia/fisiologia , Estresse Oxidativo
10.
Nutrients ; 14(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36501195

RESUMO

Food protein or food-derived peptides may regulate blood glucose levels; however, studies have shown inconsistent results. The aim of the present study was to characterize subgroups of individuals with increased risk of type 2 diabetes (T2D) and to investigate the cardiometabolic effects of fish protein in the same subgroups. We first divided participants into high insuliniAUC and low insuliniAUC subjects based on their insulin incremental area under the curve (iAUC) levels after a 2 h oral glucose tolerance test (OGTT), and secondly based on whether they had received 5.2 g salmon fish protein or placebo for 8 weeks, in a previously conducted randomized controlled trial (RCT). We then profiled these groups by analyzing plasma metabolomics and peripheral blood mononuclear cell (PBMC) gene expression. Compared to the low insuliniAUC group, the high insuliniAUC group had higher plasma concentrations of monounsaturated fatty acids (MUFAs) and glycated proteins (GlycA) and lower concentrations of glycine and acetate. After intervention with fish protein compared to placebo, however, only acetate was significantly increased in the low insuliniAUC group. In conclusion, we identified metabolic biomarkers known to be associated with T2D; also, intervention with fish protein did not affect cardiometabolic risk markers in subgroups with increased risk of T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Ácidos Graxos Monoinsaturados , Animais , Proteínas Glicadas , Glicemia/metabolismo , Glicina , Biomarcadores , Insulina , Acetatos , Proteínas de Peixes
11.
Antioxidants (Basel) ; 11(11)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36421483

RESUMO

Gold-ceria nanoparticles (Au/CeO2) are known to have antioxidant properties. However, whether these nanoparticles can provide benefits in type 2 diabetes mellitus (T2D) remains unknown. This work aimed to study the effects of Au/CeO2 nanoparticles at different rates of gold purity (10, 4.4, 1.79 and 0.82) on leukocyte-endothelium interactions and inflammation in T2D patients. Anthropometric and metabolic parameters, leukocyte-endothelium interactions, ROS production and NF-κB expression were assessed in 57 T2D patients and 51 healthy subjects. T2D patients displayed higher Body Mass Index (BMI) and characteristic alterations in carbohydrate and lipid metabolism. ROS production was increased in leukocytes of T2D patients and decreased by Au/CeO2 at 0.82% gold. Interestingly, Au/CeO2 0.82% modulated leukocyte-endothelium interactions (the first step in the atherosclerotic process) by increasing leukocyte rolling velocity and decreasing rolling flux and adhesion in T2D. A static adhesion assay also revealed diminished leukocyte-endothelium interactions by Au/CeO2 0.82% treatment. NF-κB (p65) levels increased in T2D patients and were reduced by Au/CeO2 treatment. Cell proliferation, viability, and apoptosis assays demonstrated no toxicity produced by Au/CeO2 nanoparticles. These results demonstrate that Au/CeO2 nanoparticles at 0.82% exert antioxidant and anti-inflammatory actions in the leukocyte-endothelium interaction of T2D patients, suggesting a protective role against the appearance of atherosclerosis and cardiovascular diseases when this condition exists.

12.
Free Radic Biol Med ; 193(Pt 2): 694-701, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36402438

RESUMO

Nanoparticles have a promising future in biomedical applications and knowing whether they affect ex vivo vascular reactivity is a necessary step before their use in patients. In this study, we have evaluated the vascular effect of cerium dioxide nanoparticles (CeO2NPs) on the human saphenous vein in response to relaxing and contractile agonists. In addition, we have measured the protein expression of key enzymes related to vascular homeostasis and oxidative stress. We found that CeO2NPs increased expression of both SOD isoforms, and the consequent reduction of superoxide anion would enhance the bioavailability of NO explaining the increased vascular sensitivity to sodium nitroprusside in the presence of CeO2NPs. The NOX4 reduction induced by CeO2NPs may lead to lower H2O2 synthesis associated with vasodilation through potassium channels explaining the lower vasodilation to bradykinin. In addition, we showed for the first time, that CeO2NPs increase the expression of ACE2 in human saphenous vein, and it may be the cause of the reduced contraction to angiotensin II. Moreover, we ruled out that CeO2NPs have effect on the protein expression of eNOS, sGC, BKca channels and angiotensin II receptors or modify the vascular response to noradrenaline, endothelin-1 and TXA2 analogue. In conclusion, CeO2NPs show antioxidant properties, and together with their vascular effect, they could be postulated as adjuvants for the treatment of cardiovascular diseases.


Assuntos
Nanopartículas , Veia Safena , Humanos , Antioxidantes/farmacologia , Angiotensina II , Peróxido de Hidrogênio
14.
Nitric Oxide ; 128: 1-11, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940533

RESUMO

The pro- or antitumoral properties of nitric oxide (NO) are dependent on local concentration, redox state, cellular status, duration of exposure and compartmentalization of NO generation. The intricate network of the tumor microenvironment (TME) is constituted by tumor cells, stromal and immune cells surrounded by active components of extracellular matrix that influence the biological behavior and, consequently, the treatment and prognosis of cancer. The review describes critical events in the crosstalk of cellular and stromal components in the TME, with special emphasis in the impact of NO generation in the regulation of hepatocellular carcinoma (HCC). The increased expression of nitric oxide synthase (NOS) in tumors and NO-end products in plasma have been associated with poor prognosis of cancer. We have assessed the level of the different isoforms of NOS in tumors and its relation to cell proliferation and death markers, and cell death receptor expression in tumors, and apoptotic markers and ligands of TNF-α receptor family in blood from a cohort of patients with HCC from different etiologies submitted to orthotopic liver transplantation (OLT). The high levels of NOS2 in tumors were associated with low plasma concentration of apoptotic markers (M30 and M65), FasL and TNF-α in HCV patients. By contrast, the low levels of NOS2 in tumors from alcohol-derived patients was associated with increased Trail-R1 expression in tumors, and circulating Trail levels compared to observed in plasma from HCV- and alcohol + HCV-derived patients. This study reinforces the association between increased NOS2 expression and potential risk of low patients' survival in HCC. However, a differential functional relevance of NOS expression in HCC seems to be influenced by etiologies.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa
15.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35883794

RESUMO

The chronic low-grade inflammation widely associated with obesity can lead to a prooxidant status that triggers mitochondrial dysfunction. To date, Roux-en-Y gastric bypass (RYGB) is considered the most effective strategy for obese patients. However, little is known about its molecular mechanisms. This interventional study aimed to investigate whether RYGB modulates oxidative stress, inflammation and mitochondrial dynamics in the leukocytes of 47 obese women at one year follow-up. We evaluated biochemical parameters and serum inflammatory cytokines -TNFα, IL6 and IL1ß- to assess systemic status. Total superoxide production -dHe-, mitochondrial membrane potential -TMRM-, leucocyte protein expression of inflammation mediators -MCP1 and NF-kB-, antioxidant defence -GPX1-, mitochondrial regulation-PGC1α, TFAM, OXPHOS and MIEAP- and dynamics -MFN2, MNF1, OPA1, FIS1 and p-DRP1- were also determined. After RYGB, a significant reduction in superoxide and mitochondrial membrane potential was evident, while GPX1 content was significantly increased. Likewise, a marked upregulation of the transcription factors PGC1α and TFAM, complexes of the oxidative phosphorylation chain (I-V) and MIEAP and MFN1 was observed. We conclude that women undergoing RYGB benefit from an amelioration of their prooxidant and inflammatory status and an improvement in mitochondrial dynamics of their leukocytes, which is likely to have a positive effect on clinical outcome.

16.
Front Neurol ; 13: 883927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720107

RESUMO

Background: Systemic, low-grade immune-inflammatory activity, together with social and neurocognitive performance deficits are a transdiagnostic trait of people suffering from type 2 diabetes mellitus (T2DM) and severe mental illnesses (SMIs), such as schizophrenia (SZ), major depressive disorder (MDD), and bipolar disorder (BD). We aimed to determine if immune-inflammatory mediators were significantly altered in people with SMIs or T2DM compared with healthy controls (HC) and whether these biomarkers could help predict their cognition and social functioning 1 year after assessment. Methods: We performed a prospective, 1-year follow-up cohort study with 165 participants at baseline (TB), including 30 with SZ, 42 with BD, 35 with MDD, 30 with T2DM, and 28 HC; and 125 at 1-year follow-up (TY), and determined executive domain (ED), global social functioning score (GSFS), and peripheral blood immune-inflammatory and oxidative stress biomarkers. Results: Participants with SMIs and T2DM showed increased peripheral levels of inflammatory markers, such as interleukin-10 (p < 0.01; η2 p = 0.07) and tumor necrosis factor-α (p < 0.05; η2 p = 0.08); and oxidative stress biomarkers, such as reactive oxygen species (ROS) (p < 0.05; η2 p = 0.07) and mitochondrial ROS (p < 0.01; η2 p = 0.08). The different combinations of the exposed biomarkers anticipated 46-57.3% of the total ED and 23.8-35.7% of GSFS for the participants with SMIs. Limitations: Participants' treatment, as usual, was continued without no specific interventions; thus, it was difficult to anticipate substantial changes related to the psychopharmacological pattern. Conclusion: People with SMIs show significantly increased levels of peripheral immune-inflammatory biomarkers, which may contribute to the neurocognitive and social deficits observed in SMIs, T2DM, and other diseases with systemic immune-inflammatory activation of chronic development. These parameters could help identify the subset of patients who could benefit from immune-inflammatory modulator strategies to ameliorate their functional outcomes.

18.
Redox Biol ; 53: 102342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35605453

RESUMO

Type 2 diabetes is a chronic metabolic disease that affects mitochondrial function. In this context, the rescue mechanisms of mitochondrial health, such as mitophagy and mitochondrial biogenesis, are of crucial importance. The gold standard for the treatment of type 2 diabetes is metformin, which has a beneficial impact on the mitochondrial metabolism. In this study, we set out to describe the effect of metformin treatment on mitochondrial function and mitophagy in peripheral blood mononuclear cells (PBMCs) from type 2 diabetic patients. We performed a preliminary cross-sectional observational study complying with CONSORT requirements, for which we recruited 242 subjects, divided into 101 healthy volunteers, 93 metformin-treated type 2 diabetic patients and 48 non-metformin-treated type 2 diabetic patients. Mitochondria from the type 2 diabetic patients not treated with metformin displayed more reactive oxygen species (ROS) than those from healthy or metformin-treated subjects. Protein expression of the electron transport chain (ETC) complexes was lower in PBMCs from type 2 diabetic patients without metformin treatment than in those from the other two groups. Mitophagy was altered in type 2 diabetic patients, evident in a decrease in the protein levels of PINK1 and Parkin in parallel to that of the mitochondrial biogenesis protein PGC1α, both of which effects were reversed by metformin. Analysis of AMPK phosphorylation revealed that its activation was decreased in the PBMCs of type 2 diabetic patients, an effect which was reversed, once again, by metformin. In addition, there was an increase in the serum levels of TNFα and IL-6 in type 2 diabetic patients and this was reversed with metformin treatment. These results demonstrate that metformin improves mitochondrial function, restores the levels of ETC complexes, and enhances AMPK activation and mitophagy, suggesting beneficial clinical implications in the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Metformina , Proteínas Quinases Ativadas por AMP/metabolismo , Estudos Transversais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Leucócitos Mononucleares/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo
19.
Acta Psychiatr Scand ; 146(3): 215-226, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35359023

RESUMO

OBJECTIVE: Obesity and metabolic diseases such as metabolic syndrome (MetS) are more prevalent in people with type 2 diabetes mellitus (T2DM), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). MetS components might be associated with neurocognitive and functional impairments in these individuals. The predictive and discriminatory validity of MetS and its components regarding those outcomes were assessed from prospective and transdiagnostic perspectives. METHODS: Metabolic syndrome components and neurocognitive and social functioning were assessed in 165 subjects, including 30 with SZ, 42 with BD, 35 with MDD, 30 with T2DM, and 28 healthy controls (HCs). A posteriori, individuals were classified into two groups. The MetS group consisted of those who met at least three of the following criteria: abdominal obesity (AO), elevated triglycerides (TG), reduced high-density lipoprotein cholesterol (HDL), elevated blood pressure (BP), and elevated fasting glucose (FPG); the remaining participants comprised the No-MetS group. Mixed one-way analysis of covariance and linear and binary logistic regression analyses were performed. RESULTS: Cognitive impairment was significantly greater in the MetS group (n = 82) than in the No-MetS group (n = 83), with small effect sizes (p < 0.05; η²p = 0.02 - 0.03). In both groups, the most robust associations between MetS components and neurocognitive and social functioning were observed with TG and FPG (p < 0.05). There was also evidence for a significant relationship between cognition and BP in the MetS group (p < 0.05). The combination of TG, FPG, elevated systolic BP and HDL best classified individuals with greater cognitive impairment (p < 0.001), and TG was the most accurate (p < 0.0001). CONCLUSIONS: Specific MetS components are significantly associated with cognitive impairment across somatic and psychiatric disorders. Our findings provide further evidence on the summative effect of MetS components to predict cognition and social functioning and allow the identification of individuals with worse outcomes. Transdiagnostic, lifestyle-based therapeutic interventions targeted at that group hold the potential to improve health outcomes.


Assuntos
Transtorno Depressivo Maior , Diabetes Mellitus Tipo 2 , Síndrome Metabólica , Glicemia , Cognição , Transtorno Depressivo Maior/complicações , Transtorno Depressivo Maior/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Humanos , Síndrome Metabólica/epidemiologia , Obesidade , Estudos Prospectivos , Fatores de Risco , Interação Social
20.
Biomedicines ; 10(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203639

RESUMO

Obesity is characterized by low-grade chronic inflammation, metabolic overload, and impaired endothelial and cardiovascular function. Roux-en-Y gastric bypass (RYGB) results in amelioration of the pro-oxidant status of leukocytes and the metabolic profile. Nevertheless, little is known about the precise mechanism that drives systemic and metabolic improvements following bariatric surgery. In this cohort study, we investigated the effect of RYGB on molecular pathways involving energy homeostasis in leukocytes in 43 obese subjects one year after surgery. In addition to clinical and biochemical parameters, we determined protein expression of systemic proinflammatory cytokines by Luminex®, different markers of inflammation, endoplasmic reticulum (ER) stress, autophagy/mitophagy by western blot, and mitochondrial membrane potential by fluorescence imaging. Bariatric surgery induced an improvement in metabolic outcomes that was accompanied by a systemic drop in hsCRP, IL6, and IL1ß levels, and a slowing down of intracellular inflammatory pathways in leukocytes (NF-κB and MCP-1), an increase in AMPK content, a reduction of ER stress (ATF6 and CHOP), augmented autophagy/mitophagy markers (Beclin 1, ATG5, LC3-I, LC3-II, NBR1, and PINK1), and a decrease of mitochondrial membrane potential. These findings shed light on the specific molecular mechanisms by which RYGB facilitates metabolic improvements, highlighting the relevance of pathways involving energy homeostasis as key mediators of these outcomes. In addition, since leukocytes are particularly exposed to physiological changes, they could be used in routine clinical practice as a good sensor of the whole body's responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...