Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 259(2): 80-96, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25623622

RESUMO

When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions.


Assuntos
Técnicas de Preparação Histocitológica/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura/métodos , Animais , Encéfalo/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Pulmão/citologia , Pulmão/ultraestrutura , Camundongos , Microscopia Eletrônica , Microscopia Eletrônica de Varredura/instrumentação , Microtomia , Raízes de Plantas/ultraestrutura
2.
Anesthesiology ; 91(5): 1195-208, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10551568

RESUMO

BACKGROUND: Fluorocarbon emulsions have been proposed as temporary artificial oxygen carriers. The aim of the present study is to compare the effectiveness of perflubron emulsion with the effectiveness of autologous blood or colloid infusion for reversal of physiologic transfusion triggers. METHODS: A multinational, multicenter, randomized, controlled, single-blind, parallel group study was performed in 147 orthopedic patients. Patients underwent acute normovolemic hemodilution with colloid to a target hemoglobin of 9 g/dl with an inspiratory oxygen fraction (FIO2) of 0.40. Patients were then randomized into one of four treatment groups after having reached any of the protocol-defined transfusion triggers including tachycardia (heart rate > 125% of posthemodilution rate or > 110 bpm), hypotension (mean arterial pressure < 75% of posthemodilution level or < or = 60 mmHg), elevated cardiac output (> 150% of posthemodilution level) or decreased mixed venous oxygen partial pressure (PVO2; < 38 mmHg). Treatments in the four groups were 450 ml autologous blood harvested during acute normovolemic hemodilution given at FO2 = 0.40; 450 ml colloid at FIO2 = 1.0; 0.9 g/kg perflubron emulsion with colloid (total = 450 ml) at FIO2 = 1.0; and 1.8 g/kg perflubron emulsion with colloid (total = 450 ml) at FIO2 = 1.0. The primary endpoint was duration of transfusion-trigger reversal. A secondary end-point was percentage of transfusion-trigger reversal. RESULTS: Perflubron emulsion was well tolerated with no serious adverse event attributed to drug treatment. Duration of reversal was longest in the 1.8 g/kg perflubron group (median, 80 min; 95% confidence interval, 60-100 min; P = 0.014 vs. autologous blood, P < 0.001 vs. colloid) followed by the 0.9 g/kg perflubron group (median, 59 min; 95% confidence interval, 40-90 min), the autologous blood group (median, 55 min; 95% confidence interval, 30-70 min) and the colloid group (median, 30 min; 95% confidence interval, 27-60 min). Percentage of reversal was also highest in the 1.8 g/kg perflubron group (97%; P < 0.001 vs. autologous blood; P = 0.014 vs. colloid), followed by 0.9 g/kg perflubron (82%), colloid (76%), and autologous blood (60%). CONCLUSIONS: Perflubron emulsion (1.8 g/kg) combined with 100% oxygen ventilation is more effective than autologous blood or colloid infusion in reversing physiologic transfusion triggers.


Assuntos
Substitutos Sanguíneos/uso terapêutico , Transfusão de Sangue Autóloga , Fluorocarbonos/uso terapêutico , Procedimentos Ortopédicos , Idoso , Algoritmos , Perda Sanguínea Cirúrgica , Substitutos Sanguíneos/efeitos adversos , Coloides , Emulsões , Feminino , Fluorocarbonos/efeitos adversos , Hemodiluição , Humanos , Hidrocarbonetos Bromados , Hipovolemia/prevenção & controle , Masculino , Pessoa de Meia-Idade , Contagem de Plaquetas , Método Simples-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...