Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 29(4): 5567-5579, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33726091

RESUMO

Optical metasurfaces were suggested as a route for engineering advanced light sources with tailored emission properties. In particular, they provide a control over the emission directionality, which is essential for single-photon sources and LED applications. Here, we experimentally study light emission from a metasurface composed of III-V semiconductor Mie-resonant nanocylinders with integrated quantum dots (QDs). Specifically, we focus on the manipulation of the directionality of spontaneous emission from the QDs due to excitation of different magnetic quadrupole resonances in the nanocylinders. To this end, we perform both back focal plane imaging and momentum-resolved spectroscopy measurements of the emission. This allows for a comprehensive analysis of the effect of the different resonant nanocylinder modes on the emission characteristics of the metasurface. Our results show that the emission directionality can be manipulated by an interplay of the excited quadrupolar nanocylinder modes with the metasurface lattice modes and provide important insights for the design of novel smart light sources and new display concepts.

2.
Nano Lett ; 20(10): 7052-7058, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32940476

RESUMO

The color of light is a fundamental property of electromagnetic radiation; as such, control of the frequency is a cornerstone of modern optics. Nonlinear materials are typically used to generate new frequencies, however the use of time-variant systems provides an alternative approach. Utilizing a metasurface that supports a high-quality factor resonance, we demonstrate that a rapidly shifting refractive index will induce frequency conversion of light that is confined in the nanoresonator meta-atoms. We experimentally observe this frequency conversion and develop a time-dependent coupled mode theory model that well describes the system. The intersection of high quality-factor resonances, active materials, and ultrafast transient spectroscopy leads to the demonstration of metasurfaces operating in a time-variant regime that enables enhanced control over light-matter interaction.

3.
Nano Lett ; 19(5): 2888-2896, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30946590

RESUMO

Terahertz (THz) photoconductive devices are used for generation, detection, and modulation of THz waves, and they rely on the ability to switch electrical conductivity on a subpicosecond time scale using optical pulses. However, fast and efficient conductivity switching with high contrast has been a challenge, because the majority of photoexcited charge carriers in the switch do not contribute to the photocurrent due to fast recombination. Here, we improve efficiency of electrical conductivity switching using a network of electrically connected nanoscale GaAs resonators, which form a perfectly absorbing photoconductive metasurface. We achieve perfect absorption without incorporating metallic elements, by breaking the symmetry of cubic Mie resonators. As a result, the metasurface can be switched between conductive and resistive states with extremely high contrast using an unprecedentedly low level of optical excitation. We integrate this metasurface with a THz antenna to produce an efficient photoconductive THz detector. The perfectly absorbing photoconductive metasurface opens paths for developing a wide range of efficient optoelectronic devices, where required optical and electronic properties are achieved through nanostructuring the resonator network.

4.
Nano Lett ; 18(11): 6906-6914, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30339762

RESUMO

Light-emitting sources and devices permeate every aspect of our lives and are used in lighting, communications, transportation, computing, and medicine. Advances in multifunctional and "smart lighting" would require revolutionary concepts in the control of emission spectra and directionality. Such control might be possible with new schemes and regimes of light-matter interaction paired with developments in light-emitting materials. Here we show that all-dielectric metasurfaces made from III-V semiconductors with embedded emitters have the potential to provide revolutionary lighting concepts and devices, with new functionality that goes far beyond what is available in existing technologies. Specifically, we use Mie-resonant metasurfaces made from semiconductor heterostructures containing epitaxial quantum dots. By controlling the symmetry of the resonant modes, their overlap with the emission spectra, and other structural parameters, we can enhance the brightness by 2 orders of magnitude, as well as reduce its far-field divergence significantly.

5.
Nat Commun ; 9(1): 2507, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955051

RESUMO

A frequency mixer is a nonlinear device that combines electromagnetic waves to create waves at new frequencies. Mixers are ubiquitous components in modern radio-frequency technology and microwave signal processing. The development of versatile frequency mixers for optical frequencies remains challenging: such devices generally rely on weak nonlinear optical processes and, thus, must satisfy phase-matching conditions. Here we utilize a GaAs-based dielectric metasurface to demonstrate an optical frequency mixer that concurrently generates eleven new frequencies spanning the ultraviolet to near-infrared. The even and odd order nonlinearities of GaAs enable our observation of second-harmonic, third-harmonic, and fourth-harmonic generation, sum-frequency generation, two-photon absorption-induced photoluminescence, four-wave mixing and six-wave mixing. The simultaneous occurrence of these seven nonlinear processes is assisted by the combined effects of strong intrinsic material nonlinearities, enhanced electromagnetic fields, and relaxed phase-matching requirements. Such ultracompact optical mixers may enable a plethora of applications in biology, chemistry, sensing, communications, and quantum optics.

6.
Nat Commun ; 8(1): 17, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28500308

RESUMO

Optical metasurfaces are regular quasi-planar nanopatterns that can apply diverse spatial and spectral transformations to light waves. However, metasurfaces are no longer adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. We experimentally realise an ultrafast tunable metasurface consisting of subwavelength gallium arsenide nanoparticles supporting Mie-type resonances in the near infrared. Using transient reflectance spectroscopy, we demonstrate a picosecond-scale absolute reflectance modulation of up to 0.35 at the magnetic dipole resonance of the metasurfaces and a spectral shift of the resonance by 30 nm, both achieved at unprecedentedly low pump fluences of less than 400 µJ cm-2. Our findings thereby enable a versatile tool for ultrafast and efficient control of light using light.Metasurfaces are not adjustable after fabrication, and a critical challenge is to realise a technique of tuning their optical properties that is both fast and efficient. Here, Shcherbakov et al. realise an ultrafast tunable metasurface with picosecond-scale large absolute reflectance modulation at low pump fluences.

7.
Nano Lett ; 15(10): 6985-90, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26393983

RESUMO

We demonstrate experimentally ultrafast all-optical switching in subwavelength nonlinear dielectric nanostructures exhibiting localized magnetic Mie resonances. We employ amorphous silicon nanodisks to achieve strong self-modulation of femtosecond pulses with a depth of 60% at picojoule-per-disk pump energies. In the pump-probe measurements, we reveal that switching in the nanodisks can be governed by pulse-limited 65 fs-long two-photon absorption being enhanced by a factor of 80 with respect to the unstructured silicon film. We also show that undesirable free-carrier effects can be suppressed by a proper spectral positioning of the magnetic resonance, making such a structure the fastest all-optical switch operating at the nanoscale.


Assuntos
Magnetismo , Nanoestruturas , Fótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...