Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
iScience ; 26(10): 107914, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37817933

RESUMO

Epidemiological data and research highlight increased neuropathy and chronic pain prevalence among females, spanning metabolic and normometabolic contexts, including murine models. Prior findings demonstrated diverse immune and neuroimmune responses between genders in neuropathic pain (NeP), alongside distinct protein expression in sciatic nerves. This study unveils adipose tissue's (AT) role in sex-specific NeP responses after peripheral nerve injury. Metabolic assessments, metabolomics, energy expenditure evaluations, AT proteomic analyses, and adipokine mobilization depict distinct AT reactions to nerve damage. Females exhibit altered lipolysis, fatty acid oxidation, heightened energy expenditure, and augmented steroids secretion affecting glucose and insulin metabolism. Conversely, male neuropathy prompts glycolysis, reduced energy expenditure, and lowered unsaturated fatty acid levels. Males' AT promotes regenerative molecules, oxidative stress defense, and stimulates peroxisome proliferator-activated receptors (PPAR-γ) and adiponectin. This study underscores AT's pivotal role in regulating gender-specific inflammatory and metabolic responses to nerve injuries, shedding light on female NeP susceptibility determinants.

2.
Curr Neurovasc Res ; 20(3): 362-376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614106

RESUMO

BACKGROUND: Physical activity in Amyotrophic Lateral Sclerosis (ALS) plays a controversial role. In some epidemiological studies, both recreational or professional sport exercise has been associated to an increased risk for ALS but the mechanisms underlying the effects of exercise have not been fully elucidated in either patients or animal models. METHODS: To better reproduce the influence of this environmental factor in the pathogenesis of ALS, we exposed SOD1G93A low-copy male mice to multiple exercise sessions at asymptomatic and pre-symptomatic disease stages in an automated home-cage running-wheel system for about 3 months. RESULTS: Repeated voluntary running negatively influenced disease progression by anticipating disease onset, impairing neuromuscular transmission, worsening neuromuscular decline, and exacerbating muscle atrophy. Muscle fibers and neuromuscular junctions (NMJ) as well as key molecular players of the nerve-muscle circuit were similarly affected. CONCLUSION: It thus appears that excessive physical activity can be detrimental in predisposed individuals and these findings could model the increased risk of developing ALS in predisposed and specific professional athletes.


Assuntos
Esclerose Lateral Amiotrófica , Masculino , Animais , Camundongos , Atividade Motora , Modelos Animais de Doenças , Progressão da Doença
3.
Toxins (Basel) ; 15(4)2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-37104185

RESUMO

Xeomin® is a commercial formulation of botulinum neurotoxin type A (BoNT/A) clinically authorized for treating neurological disorders, such as blepharospasm, cervical dystonia, limb spasticity, and sialorrhea. We have previously demonstrated that spinal injection of laboratory purified 150 kDa BoNT/A in paraplegic mice, after undergoing traumatic spinal cord injury (SCI), was able to reduce excitotoxic phenomena, glial scar, inflammation, and the development of neuropathic pain and facilitate regeneration and motor recovery. In the present study, as proof of concept in view of a possible clinical application, we studied the efficacy of Xeomin® in the same preclinical SCI model in which we highlighted the positive effects of lab-purified BoNT/A. Data comparison shows that Xeomin® induces similar pharmacological and therapeutic effects, albeit with less efficacy, to lab-purified BoNT/A. This difference, which can be improved by adjusting the dose, can be attributable to the different formulation and pharmacodynamics. Although the mechanism by which Xeomin® and laboratory purified BoNT/A induce functional improvement in paraplegic mice is still far from being understood, these results open a possible new scenario in treatment of SCI and are a stimulus for further research.


Assuntos
Blefarospasmo , Toxinas Botulínicas Tipo A , Doenças do Sistema Nervoso , Traumatismos da Medula Espinal , Animais , Camundongos , Toxinas Botulínicas Tipo A/farmacologia , Toxinas Botulínicas Tipo A/uso terapêutico , Blefarospasmo/tratamento farmacológico , Doenças do Sistema Nervoso/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico
4.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36498830

RESUMO

As a widely prescribed anti-diabetic drug, metformin has been receiving novel attention for its analgesic potential. In the study of the complex etiology of neuropathic pain (NeP), male and female individuals exhibit quite different responses characterized by higher pain sensitivity and greater NeP incidence in women. This "gender gap" in our knowledge of sex differences in pain processing strongly limits the sex-oriented treatment of patients suffering from NeP. Besides, the current investigation of the analgesic potential of metformin has not addressed the "gender gap" problem. Hence, this study focuses on metformin and sex-dependent analgesia in a murine model of NeP induced by chronic constriction injury of the sciatic nerve. We investigated sexual dimorphism in signaling pathways involved by 7 days of metformin administration, such as changes in AMP-activated protein kinase and the positive regulation of autophagy machinery, discovering that metformin affected in a sexually dimorphic manner the immunological and inflammatory response to nerve lesion. These effects were complemented by morphological and adaptive changes occurring after peripheral nerve injury. Altogether these data can contribute to explaining a number of potential mechanisms responsible for the complete recovery from NeP found in male mice, as opposed to the failure of long-lasting recovery in female animals.


Assuntos
Analgésicos , Metformina , Neuralgia , Neuropatia Ciática , Caracteres Sexuais , Animais , Feminino , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Analgésicos/farmacologia , Hiperalgesia/metabolismo , Metformina/farmacologia , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nervo Isquiático/metabolismo , Neuropatia Ciática/tratamento farmacológico
5.
Biomolecules ; 12(4)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35454121

RESUMO

Epidemiological evidence indicates that stress and aversive psychological conditions can affect cancer progression, while well-being protects against it. Although a large set of studies have addressed the impact of stress on cancer, not much is known about the mechanisms that protect from cancer in healthy psychological conditions. C57BL/6J mouse pups were exposed to an environmental enrichment condition consisting of being raised until weaning by the biological lactating mother plus a non-lactating virgin female (LnL = Lactating and non-Lactating mothers). The Control group consisted of mice raised by a single lactating mother (L = Lactating). Four months after weaning, mice from LnL and L conditions were exposed to intramuscular injection of 3-methylcolantrene (3MCA), a potent tumorigenic drug, and onset and progression of 3MCA-induced fibrosarcomas were monitored over time. Pups from the LnL compared to the L group received more parental care and were more resilient to stressful events during the first week of life. In association, the onset of tumors in LnL adults was significantly delayed. At the molecular level, we observed increased levels of wild-type p53 protein in tumor samples of LnL compared to L adults and higher levels of its target p21 in healthy muscles of LnL mice compared to the L group, supporting the hypothesis of potential involvement of p53 in tumor development. Our study sustains the model that early life care protects against tumor susceptibility.


Assuntos
Carcinogênese , Meio Social , Proteína Supressora de Tumor p53 , Animais , Feminino , Lactação , Camundongos , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/genética
6.
Neurobiol Dis ; 160: 105538, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34743985

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease characterized by depletion of motor neurons (MNs), for which effective medical treatments are still required. Previous transcriptomic analysis revealed the up-regulation of C-X-C motif chemokine receptor 2 (CXCR2)-mRNA in a subset of sporadic ALS patients and SOD1G93A mice. Here, we confirmed the increase of CXCR2 in human ALS cortex, and showed that CXCR2 is mainly localized in cell bodies and axons of cortical neurons. We also investigated the effects of reparixin, an allosteric inhibitor of CXCR2, in degenerating human iPSC-derived MNs and SOD1G93A mice. In vitro, reparixin rescued MNs from apoptotic cell death, preserving neuronal morphology, mitochondrial membrane potential and cytoplasmic membrane integrity, whereas in vivo it improved neuromuscular function of SOD1G93A mice. Altogether, these data suggest a role for CXCR2 in ALS pathology and support its pharmacological inhibition as a candidate therapeutic strategy against ALS at least in a specific subgroup of patients.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Degeneração Neural/metabolismo , Junção Neuromuscular/metabolismo , Neurônios/metabolismo , Receptores de Interleucina-8B/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Junção Neuromuscular/genética , Receptores de Interleucina-8B/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922372

RESUMO

Neuropathic pain (NeP) in humans is often a life-long condition with no effective therapy available. The higher incidence of female gender in NeP onset is worldwide reported, and although the cause is generally attributed to sex hormones, the actual mechanisms and the players involved are still unclear. Glial and immune cells take part in NeP development, and orchestrate the neuroimmune and inflammatory response, releasing pro-inflammatory factors with chemoattractant properties that activate resident immune cells and recruit immune cells from circulation. The neuro-immune crosstalk is a key contributor to pain hypersensitivity following peripheral nervous system injury. Our previous works showed that in spite of the fact that female mice had an earlier analgesic response than males following nerve lesion, the recovery from NeP was never complete, suggesting that this difference could occur in the very early stages after injury. To further investigate gender differences in immune and neuroimmune responses to NeP, we studied the main immune cells and mediators elicited both in plasma and sciatic nerves by peripheral nerve lesion. After injury, we found a different pattern of distribution of immune cell populations showing either a higher infiltration of T cells in nerves from females or a higher infiltration of macrophages in nerves from males. Moreover, in comparison to male mice, the levels of cytokines and chemokines were differently up- and down-regulated in blood and nerve lysates from female mice. Our study provides some novel insights for the understanding of gender-associated differences in the generation and perseveration of NeP as well as for the isolation of specific neurodegenerative mechanisms underlying NeP. The identification of gender-associated inflammatory profiles in neuropathy is of key importance for the development of differential biomarkers and gender-specific personalized medicine.


Assuntos
Gliose/patologia , Hiperalgesia/patologia , Inflamação/patologia , Macrófagos/patologia , Neuralgia/patologia , Traumatismos dos Nervos Periféricos/complicações , Nervo Isquiático/patologia , Animais , Citocinas , Feminino , Gliose/etiologia , Hiperalgesia/etiologia , Inflamação/etiologia , Masculino , Camundongos , Neuralgia/etiologia , Fatores Sexuais
9.
Front Immunol ; 11: 575792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329541

RESUMO

Recent preclinical and clinical evidence suggest that immune system has a role in the progression and prognosis of Amyotrophic Lateral Sclerosis (ALS), but the identification of a clear mechanism and immune players remains to be elucidated. Here, we have investigated, in 30 and 60 days (presymptomatic) and 120 days (symptomatic) old SOD1-G93A mice, systemic, peripheral, and central innate and adaptive immune and inflammatory response, correlating it with the progression of the neurodegeneration in neuromuscular junction, sciatic nerves, and spinal cord. Surprisingly, we found a very initial (45-60 days) presence of IgG in sciatic nerves together with a gradual enhancement of A20/TNFAIP3 (protein controlling NF-κB signalling) and a concomitantly significant increase and activation of circulating mast cells (MCs) as well as MCs and macrophages in sciatic nerve and an enhancement of IL-6 and IL-10. This immunological frame coincided with a myelin aggregation. The 30-60 days old SOD1-G93A mice didn't show real elements of neuroinflammation and neurodegeneration in spinal cord. In 120 days old mice macrophages and monocytes are widely diffused in sciatic nerves, peripheral neurodegeneration reaches the tip, high circulating levels of TNFα and IL-2 were found and spinal cord exhibits clear signs of neural damage and infiltrating immune cells. Our results underpin a clear immunological disorder at the origin of ALS axonopathy, in which MCs are involved in the initiation and sustaining of inflammatory events. These data cannot be considered a mere epiphenomenon of motor neuron degeneration and reveal new potential selective immune targets in ALS therapy.


Assuntos
Esclerose Lateral Amiotrófica/imunologia , Imunidade Inata , Neuroimunomodulação , Junção Neuromuscular/imunologia , Nervo Isquiático/imunologia , Medula Espinal/imunologia , Superóxido Dismutase-1/metabolismo , Degeneração Walleriana , Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Progressão da Doença , Predisposição Genética para Doença , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , NF-kappa B/metabolismo , Junção Neuromuscular/enzimologia , Junção Neuromuscular/patologia , Fenótipo , Nervo Isquiático/enzimologia , Nervo Isquiático/patologia , Transdução de Sinais , Medula Espinal/enzimologia , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Fatores de Tempo
10.
Toxins (Basel) ; 12(8)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751937

RESUMO

Botulinum neurotoxin type A (BoNT/A) is a major therapeutic agent that has been proven to be a successful treatment for different neurological disorders, with emerging novel therapeutic indications each year. BoNT/A exerts its action by blocking SNARE complex formation and vesicle release through the specific cleavage of SNAP-25 protein; the toxin is able to block the release of pro-inflammatory molecules for months after its administration. Here we demonstrate the extraordinary capacity of BoNT/A to neutralize the complete paralysis and pain insensitivity induced in a murine model of severe spinal cord injury (SCI). We show that the toxin, spinally administered within one hour from spinal trauma, exerts a long-lasting proteolytic action, up to 60 days after its administration, and induces a complete recovery of muscle and motor function. BoNT/A modulates SCI-induced neuroglia hyperreactivity, facilitating axonal restoration, and preventing secondary cells death and damage. Moreover, we demonstrate that BoNT/A affects SCI-induced neuropathic pain after moderate spinal contusion, confirming its anti-nociceptive action in this kind of pain, as well. Our results provide the intriguing and real possibility to identify in BoNT/A a therapeutic tool in counteracting SCI-induced detrimental effects. Because of the well-documented BoNT/A pharmacology, safety, and toxicity, these findings strongly encourage clinical translation.


Assuntos
Analgésicos/uso terapêutico , Toxinas Botulínicas Tipo A/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Neuralgia/tratamento farmacológico , Fármacos Neuromusculares/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Paralisia/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Cicatriz/prevenção & controle , Feminino , Camundongos , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos
11.
Eur J Pain ; 24(2): 374-382, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31610068

RESUMO

The incidence of peripheral neuropathy development and chronic pain is strongly associated with the arrival of senescence. The gradual physiological decline that begins after the mature stage produces myelin dysregulation and pathological changes in peripheral nervous system, attributed to reduction in myelin proteins expression and thinner myelin sheath. Moreover in elder subjects, when nerve damage occurs, the regenerative processes are seriously compromised and neuropathic pain (NeP) is maintained. We previously demonstrated that caloric restriction (CR) in adult (4 months) nerve-lesioned mice was able to facilitate remyelination and axons regeneration, to have anti-inflammatory action and to prevent NeP chronification. Here, we show CR therapeutic potential on nerve injury-induced neuropathy in mice at the beginning of the senescence (12 months). Long lasting decrease in hypersensitvity induced by peripheral nerve lesion and powerful reduction in proinflammatory circulating agents have been observed. Moreover, our results evidence that CR is able to counteract the ageing-related delay in axonal regeneration, enhancing Schwann cells proliferation and accelerating recovery processes. Differently from adults, it does not affect fibres myelination. In light of a continuous growth in elderly population and correlated health problems, including metabolic disorders, the prevalence of neuropathy is enhancing, generating a significant public cost and social concern. In this context energy depletion by dietary restriction can be a therapeutic option in NeP.


Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Idoso , Envelhecimento , Animais , Axônios , Restrição Calórica , Humanos , Camundongos , Bainha de Mielina , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/complicações , Células de Schwann , Nervo Isquiático
13.
Sci Rep ; 9(1): 8883, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222077

RESUMO

Traumatic spinal cord injury has dramatic consequences and a huge social impact. We propose a new mouse model of spinal trauma that induces a complete paralysis of hindlimbs, still observable 30 days after injury. The contusion, performed without laminectomy and deriving from the pressure exerted directly on the bone, mimics more closely many features of spinal injury in humans. Spinal cord was injured at thoracic level 10 (T10) in adult anesthetized female CD1 mice, mounted on stereotaxic apparatus and connected to a precision impactor device. Following severe injury, we evaluated motor and sensory functions, and histological/morphological features of spinal tissue at different time points. Moreover, we studied the effects of early and subchronic administration of Docosahexaenoic acid, investigating functional responses, structural changes proximal and distal to the lesion in primary and secondary injury phases, proteome modulation in injured spinal cord. Docosahexaenoic acid was able i) to restore behavioural responses and ii) to induce pro-regenerative effects and neuroprotective action against demyelination, apoptosis and neuroinflammation. Considering the urgent health challenge represented by spinal injury, this new and reliable mouse model together with the positive effects of docosahexaenoic acid provide important translational implications for promising therapeutic approaches for spinal cord injuries.


Assuntos
Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/uso terapêutico , Traumatismos da Medula Espinal/patologia , Doença Aguda , Animais , Doença Crônica , Feminino , Humanos , Camundongos , Traumatismos da Medula Espinal/tratamento farmacológico
14.
PLoS One ; 13(12): e0208596, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532260

RESUMO

There is a growing interest on the role of autophagy in diabetes pathophysiology, where development of neuropathy is one of the most frequent comorbidities. We have previously demonstrated that neuropathic pain after nerve damage is exacerbated in autophagy-defective heterozygous Ambra1 mice. Here, we show the existence of a prediabetic state in Ambra1 mice, characterized by hyperglycemia, intolerance to glucose and insulin resistance. Thus, we further investigate the hypothesis that prediabetes may account for the exacerbation of allodynia and chronic pain and that counteracting the autophagy deficit may relieve the neuropathic condition. We took advantage from caloric restriction (CR) able to exert a double action: a powerful increase of autophagy and a control on the metabolic status. We found that CR ameliorates neuropathy throughout anti-inflammatory and metabolic mechanisms both in Ambra1 and in WT animals subjected to nerve injury. Moreover, we discovered that nerve lesion represents, per se, a metabolic stressor and CR reinstates glucose homeostasis, insulin resistance, incomplete fatty acid oxidation and energy metabolism. As autophagy inducer, CR promotes and anticipates Schwann cell autophagy via AMP-activated protein kinase (AMPK) that facilitates remyelination in peripheral nerve. In summary, we provide new evidence for the role of autophagy in glucose metabolism and identify in energy depletion by dietary restriction a therapeutic approach in the fight against neuropathic pain.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Restrição Calórica , Inflamação/prevenção & controle , Degeneração Neural/prevenção & controle , Neuralgia/prevenção & controle , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Aminoácidos/sangue , Animais , Carnitina/análogos & derivados , Carnitina/sangue , Citocinas/análise , Metabolismo Energético , Glucose/metabolismo , Heterozigoto , Resistência à Insulina , Masculino , Camundongos , Camundongos Transgênicos , Estado Pré-Diabético/dietoterapia , Estado Pré-Diabético/patologia , Células de Schwann/citologia , Células de Schwann/metabolismo
15.
Toxins (Basel) ; 10(3)2018 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-29562640

RESUMO

Clinical use of neurotoxins from Clostridium botulinum is well established and is continuously expanding, including in treatment of pain conditions. Background: The serotype A (BoNT/A) has been widely investigated, and current data demonstrate that it induces analgesia and modulates nociceptive processing initiated by inflammation or nerve injury. Given that data concerning the serotype B (BoNT/B) are limited, the aim of the present study was to verify if also BoNT/B is able not only to counteract neuropathic pain, but also to interfere with inflammatory and regenerative processes associated with the nerve injury. Methods: As model of neuropathic pain, chronic constriction injury (CCI) of the sciatic nerve was performed in CD1 male mice. Mice were intraplantarly injected with saline (control) or BoNT/B (5 or 7.5 pg/mouse) into the injured hindpaw. For comparison, another mouse group was injected with BoNT/A (15 pg/mouse). Mechanical allodynia and functional recovery of the injured paw was followed for 101 days. Spinal cords and sciatic nerves were collected at day 7 for immunohistochemistry. Results and Conclusions: The results of this study show that BoNT/B is a powerful biological molecule that, similarly to BoNT/A, can reduce neuropathic pain over a long period of time. However, the analgesic effects are not associated with an improvement in functional recovery, clearly highlighting an important difference between the two serotypes for the treatment of this chronic pain state.


Assuntos
Analgésicos/uso terapêutico , Toxinas Botulínicas Tipo A/uso terapêutico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Hiperalgesia/metabolismo , Masculino , Camundongos , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
16.
Nat Commun ; 8(1): 1778, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29176651

RESUMO

Following peripheral axon injury, dysregulation of non-coding microRNAs (miRs) occurs in dorsal root ganglia (DRG) sensory neurons. Here we show that DRG neuron cell bodies release extracellular vesicles, including exosomes containing miRs, upon activity. We demonstrate that miR-21-5p is released in the exosomal fraction of cultured DRG following capsaicin activation of TRPV1 receptors. Pure sensory neuron-derived exosomes released by capsaicin are readily phagocytosed by macrophages in which an increase in miR-21-5p expression promotes a pro-inflammatory phenotype. After nerve injury in mice, miR-21-5p is upregulated in DRG neurons and both intrathecal delivery of a miR-21-5p antagomir and conditional deletion of miR-21 in sensory neurons reduce neuropathic hypersensitivity as well as the extent of inflammatory macrophage recruitment in the DRG. We suggest that upregulation and release of miR-21 contribute to sensory neuron-macrophage communication after damage to the peripheral nerve.


Assuntos
Exossomos/metabolismo , Gânglios Espinais/metabolismo , Macrófagos/imunologia , MicroRNAs/metabolismo , Neuralgia/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios/metabolismo , Exossomos/genética , Gânglios Espinais/citologia , Gânglios Espinais/lesões , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neuralgia/genética , Neuralgia/imunologia , Fagocitose , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
17.
Sci Rep ; 6: 18980, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26742647

RESUMO

Sex differences play a role in pain sensitivity, efficacy of analgesic drugs and prevalence of neuropathic pain, even if the underlying mechanisms are far from being understood. We demonstrate that male and female mice react differently to structural and functional changes induced by sciatic nerve ligature, used as model of neuropathic pain. Male mice show a gradual decrease of allodynia and a complete recovery while, in females, allodynia and gliosis are still present four months after neuropathy induction. Administration of 17ß-estradiol is able to significantly attenuate this difference, reducing allodynia and inducing a complete recovery also in female mice. Parallel to pain attenuation, 17ß-estradiol treated-mice show a functional improvement of the injured limb, a faster regenerative process of the peripheral nerve and a decreased neuropathy-induced gliosis. These results indicate beneficial effects of 17ß-estradiol on neuropathic pain and neuronal regeneration and focuses on the importance of considering gonadal hormones also in clinical studies.


Assuntos
Analgésicos/farmacologia , Estradiol/farmacologia , Gliose/tratamento farmacológico , Hiperalgesia/tratamento farmacológico , Neuralgia/tratamento farmacológico , Nervo Isquiático/efeitos dos fármacos , Animais , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Gliose/etiologia , Gliose/genética , Gliose/fisiopatologia , Hiperalgesia/etiologia , Hiperalgesia/genética , Hiperalgesia/fisiopatologia , Queratinas/genética , Queratinas/metabolismo , Ligadura/efeitos adversos , Masculino , Camundongos , Anotação de Sequência Molecular , Miosinas/genética , Miosinas/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Neuralgia/etiologia , Neuralgia/genética , Neuralgia/fisiopatologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Nervo Isquiático/lesões , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia , Caracteres Sexuais
18.
Pain ; 157(3): 666-676, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26574822

RESUMO

Severe pain is a common and debilitating complication of metastatic bone cancer. Current analgesics provide insufficient pain relief and often lead to significant adverse effects. In models of cancer-induced bone pain, pathological sprouting of sensory fibers at the tumor-bone interface occurs concomitantly with reactive astrocytosis in the dorsal horn of the spinal cord. We observed that calcitonin gene-related peptide (CGRP)-fiber sprouting in the bone was associated with an increase in CGRP content in sensory neuron cell bodies in the dorsal root ganglia (DRG) and increased basal and activity-evoked release of CGRP from their central terminals in the dorsal horn. Intrathecal administration of a peptide antagonist (α-CGRP8-37) attenuated referred allodynia in the hind paw ipsilateral to bone cancer. CGRP receptor components (CLR and RAMP1) were up-regulated in dorsal horn neurons and expressed by reactive astrocytes. In primary cultures of astrocytes, CGRP incubation led to a concentration-dependent increase of forskolin-induced cAMP production, which was attenuated by pretreatment with CGRP8-37. Furthermore, CGRP induced ATP release in astrocytes, which was inhibited by CGRP8-37. We suggest that the peripheral increase in CGRP content observed in cancer-induced bone pain is mirrored by a central increase in the extracellular levels of CGRP. This increase in CGRP not only may facilitate glutamate-driven neuronal nociceptive signaling but also act on astrocytic CGRP receptors and lead to release of ATP.


Assuntos
Neoplasias Ósseas/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Dor/metabolismo , Medula Espinal/metabolismo , Animais , Neoplasias Ósseas/patologia , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C3H , Técnicas de Cultura de Órgãos , Dor/patologia , Medula Espinal/patologia
19.
Biomed Res Int ; 2015: 905906, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25629055

RESUMO

D-Aspartate (D-Asp) is a free D-amino acid found in the mammalian brain with a temporal-dependent concentration based on the postnatal expression of its metabolizing enzyme D-aspartate oxidase (DDO). D-Asp acts as an agonist on NMDA receptors (NMDARs). Accordingly, high levels of D-Asp in knockout mice for Ddo gene (Ddo (-/-)) or in mice treated with D-Asp increase NMDAR-dependent processes. We have here evaluated in Ddo (-/-) mice the effect of high levels of free D-Asp on the long-term plastic changes along the nociceptive pathway occurring in chronic and acute pain condition. We found that Ddo (-/-) mice show an increased evoked activity of the nociceptive specific (NS) neurons of the dorsal horn of the spinal cord (L4-L6) and a significant decrease of mechanical and thermal thresholds, as compared to control mice. Moreover, Ddo gene deletion exacerbated the nocifensive responses in the formalin test and slightly reduced pain thresholds in neuropathic mice up to 7 days after chronic constriction injury. These findings suggest that the NMDAR agonist, D-Asp, may play a role in the regulation of NS neuron electrophysiological activity and behavioral responses in physiological and pathological pain conditions.


Assuntos
Ácido D-Aspártico/farmacologia , Inflamação/patologia , Neuralgia/patologia , Neuralgia/fisiopatologia , Neurônios/patologia , Nociceptividade/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Animais , D-Aspartato Oxidase/deficiência , D-Aspartato Oxidase/metabolismo , Feminino , Deleção de Genes , Período de Latência Psicossexual , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/efeitos dos fármacos , Temperatura , Fatores de Tempo
20.
Toxicon ; 94: 23-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25529549

RESUMO

We evaluate analgesic effects of BoNT/A in relation to the two main transient receptor potentials (TRP), the vanilloid 1 (TRPV1) and the ankyrin 1 (TRPA1), having a role in migraine pain. BoNT/A (15 pg/mouse) was injected in the inner side of the medial part of hindlimb thigh of mice, where the superficial branch of femoral artery is located. We chosen this vascular structure because it is similar to other vascular structures, such as the temporal superficial artery, whose perivascular nociceptive fibres probably contributes to migraine pain. After an interval, ranging from 7 to 30 days, capsaicin (agonist of TRPV1) or allyl isothiocyanate (AITC; agonist of TRPA1) were injected in the same region previously treated with BoNT/A and nocifensive response to chemicals-induced pain was recorded. In absence of BoNT/A, capsaicin and AITC induced extensive nocifensive response, with a markedly different temporal profile: capsaicin induced maximal pain during the first 5 min, while AITC induced maximal pain at 15-30 min after injection. Pretreatment with BoNT/A markedly reduced both the capsaicin- and AITC-induced pain for at least 21 days. These data suggest a long lasting analgesic effect of BoNT/A exerted via prevention of responsiveness of TRPV1 and TRPA1 toward their respective agonists.


Assuntos
Analgésicos/uso terapêutico , Toxinas Botulínicas Tipo A/uso terapêutico , Dor/tratamento farmacológico , Animais , Capsaicina , Isotiocianatos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dor/induzido quimicamente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...