Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(2): 309-322, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272032

RESUMO

Genetic variants that affect mRNA splicing are a major cause of hereditary disorders, but the spliceogenicity of variants is challenging to predict. RNA diagnostics of clinically accessible tissues enable rapid functional characterization of splice-altering variants within their natural genetic context. However, this analysis cannot be offered to all individuals as one in five human disease genes are not expressed in easily accessible cell types. To overcome this problem, we have used CRISPR activation (CRISPRa) based on a dCas9-VPR mRNA-based delivery platform to induce expression of the gene of interest in skin fibroblasts from individuals with suspected monogenic disorders. Using this ex vivo splicing assay, we characterized the splicing patterns associated with germline variants in the myelin protein zero gene (MPZ), which is exclusively expressed in Schwann cells of the peripheral nerves, and the spastin gene (SPAST), which is predominantly expressed in the central nervous system. After overnight incubation, CRISPRa strongly upregulated MPZ and SPAST transcription in skin fibroblasts, which enabled splice variant profiling using reverse transcription polymerase chain reaction, next-generation sequencing, and long-read sequencing. Our investigations show proof of principle of a promising genetic diagnostic tool that involves CRISPRa to activate gene expression in easily accessible cells to study the functional impact of genetic variants. The procedure is easy to perform in a diagnostic laboratory with equipment and reagents all readily available.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Splicing de RNA , Humanos , Splicing de RNA/genética , RNA Mensageiro , Sistema Nervoso Central , Espastina
2.
Transl Lung Cancer Res ; 12(1): 42-65, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36762066

RESUMO

Background: Epithelial-mesenchymal-transition (EMT) is an epigenetic-based mechanism contributing to the acquired treatment resistance against receptor tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) cells harboring epidermal growth factor receptor (EGFR)-mutations. Delineating the exact epigenetic and gene-expression alterations in EMT-associated EGFR TKI-resistance (EMT-E-TKI-R) is vital for improved diagnosis and treatment of NSCLC patients. Methods: We characterized genome-wide changes in mRNA-expression, DNA-methylation and the histone-modification H3K36me3 in EGFR-mutated NSCLC HCC827 cells in result of acquired EMT-E-TKI-R. CRISPR/Cas9 was used to functional examine key findings from the omics analyses. Results: Acquired EMT-E-TKI-R was analyzed with three omics approaches. RNA-sequencing identified 2,233 and 1,972 up- and down-regulated genes, respectively, and among these were established EMT-markers. DNA-methylation EPIC array analyses identified 14,163 and 7,999 hyper- and hypo-methylated, respectively, differential methylated positions of which several were present in EMT-markers. Finally, H3K36me3 chromatin immunoprecipitation (ChIP)-sequencing detected 2,873 and 3,836 genes with enrichment and depletion, respectively, and among these were established EMT-markers. Correlation analyses showed that EMT-E-TKI-R mRNA-expression changes correlated better with H3K36me3 changes than with DNA-methylation changes. Moreover, the omics data supported the involvement of the MIR141/MIR200C-ZEB1/ZEB2-FGFR1 signaling axis for acquired EMT-E-TKI-R. CRISPR/Cas9-mediated analyses corroborated the importance of ZEB1 in acquired EMT-E-TKI-R, MIR200C and MIR141 to be in an EMT-E-TKI-R-associated auto-regulatory loop with ZEB1, and FGFR1 to mediate cell survival in EMT-E-TKI-R. Conclusions: The current study describes the synchronous genome-wide changes in mRNA-expression, DNA-methylation, and H3K36me3 in NSCLC EMT-E-TKI-R. The omics approaches revealed potential novel diagnostic markers and treatment targets. Besides, the study consolidates the functional impact of the MIR141/MIR200C-ZEB1/ZEB2-FGFR1-signaling axis in NSCLC EMT-E-TKI-R.

3.
Mol Oncol ; 15(11): 2868-2876, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34453867

RESUMO

Determination of tumour-specific transcription based on liquid biopsies possesses a large diagnostic and prognostic potential in non-small cell lung cancer (NSCLC). Cell-free DNA (cfDNA) packed in nucleosomes mirrors the histone modification profiles present in the cells of origin. H3 lysine 36 trimethylation (H3K36me3)-modified nucleosomes are associated with active genes, and therefore, cell-free chromatin immunoprecipitation (cfChIP) of H3K36me3-associated cfDNA has the potential to delineate whether transcription of a particular gene is occurring in the cells from which its cfDNA originates. We hypothesized that cfChIP can delineate transcriptional status of genes harbouring somatic cancer mutations and analysed the recurrently observed EGFR-L858R mutation as an example. In representative NSCLC cell lines, the relationship between wild-type (WT) and mutated EGFR transcriptional activity and mRNA expression levels was analysed using H3K36me3 ChIP and EGFR mRNA reverse transcription quantitative PCR (RT-qPCR), respectively. The ChIP analysis showed that both WT and mutated EGFR are transcribed and that mRNA is similarly expressed per EGFR copy. Based on this observation, we proceeded with EGFR cfChIP using blood plasma from NSCLC patients harbouring the EGFR-L858R mutation. EGFR-WT fragments can originate from both nontumour cells with no or low EGFR transcription and tumour cells with active EGFR transcription, whereas EGFR-L858R fragments must specifically originate from tumour cells. H3K36me3 cfChIP followed by droplet digital PCR (ddPCR) revealed significantly higher enrichment of EGFR-L858R compared to EGFR-WT fragments. This is in alignment with EGFR-L858R being actively transcribed in the NSCLC tumour cells. This study is proof-of-principle that cfChIP can be used to identify tumour-specific transcriptional activity of mutated alleles, which can expand the utility of liquid biopsy-based cfDNA analyses to enhance tumour diagnostics and therapeutics.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Imunoprecipitação da Cromatina , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/patologia , Mutação/genética , Inibidores de Proteínas Quinases , Reação em Cadeia da Polimerase em Tempo Real
4.
Lung Cancer ; 147: 244-251, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32759018

RESUMO

OBJECTIVES: Lung cancer is the leading cause of cancer related death worldwide. Accurate molecular diagnostics from a tumor biopsy is paramount for correct diagnosis, treatment strategy, and prediction of outcome. However, a tumor biopsy can be misleading due to tumor heterogeneity and consecutive biopsies are rarely achievable. Importantly, tumor-specific genetic information concerning mutations and translocations, can also be obtained from liquid biopsies, e.g. blood plasma, containing cell-free DNA (cfDNA) with both systemic and tumor origin. Tumor-specific gene-expression information can also be determined from liquid biopsies using cfDNA methylation and cell-free RNA analyses. However, supplementary methodologies that can determine gene-expression patterns in lung tumors from liquid biopsies could also have diagnostic impact. MATERIALS AND METHODS: We here present the method cell-free chromatin Immunoprecipitation (cfChIP), which for genes having high expression specifically in the tumor, can determine such gene-expression from blood plasma. In cfChIP cell-free nucleosomes modified with histone H3 lysine 36 tri-methylation (H3K36me3), a mark quantitatively correlated with the transcription of the underlying gene, are isolated, and associated cfDNA quantified. RESULTS: We demonstrate that cfChIP from lung cancer patient blood plasma can successfully quantify the level of H3K36me3 associated with circulating cell-free nucleosomes and thereby quantify the transcriptional level of genes associated with these nucleosomes. Moreover, as a proof-of-principle we show that in blood plasma from 14 lung cancer patients, H3K36me3 cfChIP can replicate the expected higher expression of KRT6 in lung squamous cell carcinoma relative to adenocarcinoma. CONCLUSION: This work shows that for genes with a high expression specifically in tumor, cfChIP can determine this gene-expression pattern from blood plasma. cfChIP is a method that determine gene-expression at the transcriptional level and accordingly can supplement cfDNA methylation and cell-free RNA analyses.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Imunoprecipitação da Cromatina , Humanos , Neoplasias Pulmonares/genética , Plasma
5.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31776283

RESUMO

Interferon lambda 4 (IFN-λ4) is a recently identified enigmatic member of the interferon (IFN) lambda family. Genetic data suggest that the IFNL4 gene acts in a proviral and anti-inflammatory manner in patients. However, the protein is indistinguishable in vitro from the other members of the interferon lambda family. We have investigated the gene regulation of IFNL4 in detail and found that it differs radically from that of canonical antiviral interferons. Being induced by viral infection is a defining characteristic of interferons, but viral infection or overexpression of members of the interferon regulatory factor (IRF) family of transcription factors only leads to a minute induction of IFNL4 This behavior is evolutionarily conserved and can be reversed by inserting a functional IRF3 binding site into the IFNL4 promoter. Thus, the regulation of the IFNL4 gene is radically different and might explain some of the atypical phenotypes associated with the IFNL4 gene in humans.IMPORTANCE Recent genetic evidence has highlighted how the IFNL4 gene acts in a counterintuitive manner, as patients with a nonfunctional IFNL4 gene exhibit increased clearance of hepatitis C virus (HCV) but also increased liver inflammation. This suggests that the IFNL4 gene acts in a proviral and anti-inflammatory manner. These surprising but quite clear genetic data have prompted an extensive examination of the basic characteristics of the IFNL4 gene and its gene product, interferon lambda 4 (IFN-λ4). We have investigated the expression of the IFNL4 gene and found it to be poorly induced by viral infections. A thorough investigation of the IFNL4 promoter revealed a highly conserved and functional promoter, but also one that lacks the defining characteristic of interferons (IFNs), i.e., the ability to be effectively induced by viral infections. We suggest that the unique function of the IFNL4 gene is related to its noncanonical transcriptional regulation.


Assuntos
Evolução Molecular , Interferons/genética , Interferons/metabolismo , Células A549 , Animais , Antivirais/farmacologia , Sequência de Bases , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Hepacivirus/fisiologia , Hepatite C/metabolismo , Humanos , Inflamação , Interferons/classificação , Interleucinas/classificação , Interleucinas/genética , Interleucinas/farmacologia , Fígado/patologia , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Células THP-1
6.
Lung Cancer ; 132: 132-140, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31097086

RESUMO

OBJECTIVES: Increased FGFR1 expression is associated with resistance to tyrosine kinase inhibitors (TKIs) in EGFR-mutated NSCLC cells and often concomitant with epithelial to mesenchymal transition (EMT). However, the cause-and-effect relationship between increased FGFR1 expression and EMT in the genetic background of EGFR-mutated non-small cell lung cancer (NSCLC) cells is not clear. Previous studies have specifically addressed the relationship between EMT and increased FGFR1 expression in the context of simultaneous TKI-mediated blocking of EGFR-signaling. Here, in the context of EGFR-mutated NSCLC cells with active EGFR-signaling, we have examined whether increased FGFR1 expression drives EMT or is an EMT passenger event. MATERIALS AND METHODS: For cause-and-effect analyses between EMT and FGFR1 expression, including expression of alternative spliced FGFR1 isoforms, we used CRISPR-dCAS9-SAM-mediated induction of the endogenous FGFR1 and ZEB1 genes, as well as biochemical EMT-induction, in PC9 and HCC827 NSCLC cell lines harboring activating EGFR-mutations. RESULTS: We find that FGFR1 expression correlates with a ZEB1-associated EMT gene expression profile in NSCLC cells. In experiments using NSCLC cell lines harboring activating EGFR-mutations we show that CRISPR-dCAS9-SAM-mediated induction of FGFR1 expression is neither driving an increase in ZEB1 expression nor EMT characteristics. However, CRISPR-dCAS9-SAM-mediated induction of ZEB1 expression drives EMT characteristics and an increase in FGFR1 expression. Biochemical induction of EMT also drives an increase in FGFR1 expression. CONCLUSION: From our findings concerning the cause-and-effect relationship in the genetic background of EGFR-mutated NSCLC cells, we conclude that an increase in ZEB1 expression is a driver of EMT resulting in concomitant increased FGFR1 expression, whereas an increase in FGFR1 expression is insufficient to drive concomitant EMT.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/fisiologia , Gefitinibe/uso terapêutico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Carcinogênese , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mutação/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais
7.
Transl Oncol ; 12(3): 432-440, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30562682

RESUMO

Non-small cell lung carcinoma patients with epidermal growth factor receptor (EGFR) mutations are offered EGFR tyrosine kinase inhibitors (TKI) as first line treatment, but 20-40% of these patients do not respond. High expression of alternative receptor tyrosine kinases, such as Fibroblast growth factor receptor 1 (FGFR1), potentially mediates intrinsic EGFR TKI resistance. To study this in molecular detail, we used CRISPR-dCas9 Synergistic Activation Mediator (SAM) for up-regulation of FGFR1 in physiological relevant levels in the EGFR mutated NSCLC cell lines HCC827 and PC9 thereby generating HCC827gFGFR1 and PC9gFGFR1. The sensitivity to the TKI erlotinib was investigated in vitro and in a BALBc nu/nu mouse xenograft model. FGFR1 up-regulation decreased TKI-sensitivity in both NSCLC cell lines in the presence of the ligand fibroblast growth factor 2 (FGF2). Xenografts were established with PC9gFGFR1 cells and it was demonstrated that there was no significant difference in tumor size between TKI- and vehicle-treated PC9gFGFR1 tumors. This supports decreased TKI-sensitivity in NSCLC cells with FGFR1 up-regulation. Our study points to FGFR1 signaling being an intrinsic resistance mechanism abolishing TKI response in EGFR mutated NSCLC.

8.
J Biotechnol ; 274: 54-57, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29596855

RESUMO

When studying complex interconnected regulatory networks, effective methods for simultaneously manipulating multiple genes expression are paramount. Previously, we have developed a simple method for generation of an all-in-one CRISPR gRNA expression array. We here present a Golden Gate Assembly-based system of synergistic activation mediator (SAM) compatible CRISPR/dCas9 gRNA expression array for the simultaneous activation of multiple genes. Using this system, we demonstrated the simultaneous activation of the transcription factors, TWIST, SNAIL, SLUG, and ZEB1 a human breast cancer cell line.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Guia de Cinetoplastídeos/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética
10.
Cell Mol Life Sci ; 73(22): 4315-4325, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27178736

RESUMO

The engineered CRISPR/Cas9 technology has developed as the most efficient and broadly used genome editing tool. However, simultaneously targeting multiple genes (or genomic loci) in the same individual cells using CRISPR/Cas9 remain one technical challenge. In this article, we have developed a Golden Gate Assembly method for the generation of CRISPR gRNA expression arrays, thus enabling simultaneous gene targeting. Using this method, the generation of CRISPR gRNA expression array can be accomplished in 2 weeks, and contains up to 30 gRNA expression cassettes. We demonstrated in the study that simultaneously targeting 10 genomic loci or simultaneously inhibition of multiple endogenous genes could be achieved using the multiplexed gRNA expression array vector in human cells. The complete set of plasmids is available through the non-profit plasmid repository Addgene.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Expressão Gênica , Marcação de Genes/métodos , RNA Guia de Cinetoplastídeos/genética , Clonagem Molecular , Corantes Fluorescentes/metabolismo , Deleção de Genes , Técnicas de Transferência de Genes , Genes Reporter , Loci Gênicos , Humanos , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
11.
BMC Cancer ; 16: 32, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26791953

RESUMO

BACKGROUND: The three members of the human heterochromatin protein 1 (HP1) family of proteins, HP1α, HP1ß, and HPγ, are involved in chromatin packing and epigenetic gene regulation. HP1α is encoded from the CBX5 gene and is a suppressor of metastasis. CBX5 is down-regulated at the transcriptional and protein level in metastatic compared to non-metastatic breast cancer. CBX5 shares a bi-directional promoter structure with the hnRNPA1 gene. But whereas CBX5 expression is down-regulated in metastatic cells, hnRNAP1 expression is constant. Here, we address the regulation of CBX5 in human breast cancer. METHODS: Transient transfection and transposon mediated integration of dual-reporter mini-genes containing the bi-directional hnRNPA1 and CBX5 promoter was performed to investigate transcriptional regulation in breast cancer cell lines. Bioinformatics and functional analysis were performed to characterize transcriptional events specifically regulating CBX5 expression. TSA treatment and Chromatin Immunoprecipitation (ChIP) were performed to investigate the chromatin structure along CBX5 in breast cancer cells. Finally, expression of hnRNPA1 and CBX5 mRNA isoforms were measured by quantitative reverse transcriptase PCR (qRT-PCR) in breast cancer tissue samples. RESULTS: We demonstrate that an hnRNPA1 and CBX5 bi-directional core promoter fragment does not comprise intrinsic capacity for specific CBX5 down-regulation in metastatic cells. Characterization of transcriptional events in the 20 kb CBX5 intron 1 revealed existence of several novel CBX5 transcripts. Two of these encode consensus HP1α protein but used autonomous promoters in intron 1 by which HP1α expression could be de-coupled from the bi-directional promoter. In addition, another CBX5 transcriptional isoform, STET, was discovered. This transcript includes CBX5 exon 1 and part of intron 1 sequences but lacks inclusion of HP1α encoding exons. Inverse correlation between STET and HP1α coding CBX5 mRNA expression was observed in breast cancer cell lines and tissue samples from breast cancer patients. CONCLUSION: We find that HP1α is down-regulated in a mechanism involving CBX5 promoter downstream sequences and that regulation through alternative polyadenylation and splicing generates a transcript, STET, with potential importance in carcinogenesis.


Assuntos
Neoplasias da Mama/genética , Proteínas Cromossômicas não Histona/biossíntese , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/biossíntese , Regiões Promotoras Genéticas , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina/genética , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/genética , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Íntrons/genética , Metástase Neoplásica , Splicing de RNA/genética
12.
Mediators Inflamm ; 2015: 120605, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26696749

RESUMO

Intestinal CD4(+) T cell depletion is rapid and profound during early HIV-1 infection. This leads to a compromised mucosal barrier that prompts chronic systemic inflammation. The preferential loss of intestinal T helper 17 (Th17) cells in HIV-1 disease is a driver of the damage within the mucosal barrier and of disease progression. Thus, understanding the effects of new therapeutic strategies in the intestines has high priority. Histone deacetylase (HDAC) inhibitors (e.g., panobinostat) are actively under investigation as potential latency reversing agents in HIV eradication studies. These drugs have broad effects that go beyond reactivating virus, including modulation of immune pathways. We examined colonic biopsies from ART suppressed HIV-1 infected individuals (clinicaltrials.gov: NCT01680094) for the effects of panobinostat on intestinal T cell activation and on inflammatory cytokine production. We compared biopsy samples that were collected before and during oral panobinostat treatment and observed that panobinostat had a clear biological impact in this anatomical compartment. Specifically, we observed a decrease in CD69(+) intestinal lamina propria T cell frequency and increased IL-17A mRNA expression in the intestinal epithelium. These results suggest that panobinostat therapy may influence the restoration of mucosal barrier function in these patients.


Assuntos
Síndrome da Imunodeficiência Adquirida/imunologia , HIV-1 , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Indóis/farmacologia , Interleucina-17/genética , Mucosa Intestinal/imunologia , RNA Mensageiro/análise , Adulto , Regulação da Expressão Gênica , Humanos , Interferon gama/biossíntese , Ativação Linfocitária , Panobinostat , Linfócitos T/imunologia
13.
Antimicrob Agents Chemother ; 59(7): 3984-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25896701

RESUMO

Adjunct therapy with the histone deacetylase inhibitor (HDACi) romidepsin increases plasma viremia in HIV patients on combination antiretroviral therapy (cART). However, a potential concern is that reversing HIV latency with an HDACi may reactivate the virus in anatomical compartments with suboptimal cART concentrations, leading to de novo infection of susceptible cells in these sites. We tested physiologically relevant romidepsin concentrations known to reactivate latent HIV in order to definitively address this concern. We found that romidepsin significantly inhibited HIV infection in peripheral blood mononuclear cells and CD4(+) T cells but not in monocyte-derived macrophages. In addition, romidepsin impaired HIV spreading in CD4(+) T cell cultures. When we evaluated the impact of romidepsin on quantitative viral outgrowth assays with primary resting CD4(+) T cells, we found that resting CD4(+) T cells exposed to romidepsin exhibited reduced proliferation and viability. This significantly lowered assay sensitivity when measuring the efficacy of romidepsin as an HIV latency reversal agent. Altogether, our data indicate that romidepsin-based HIV eradication strategies are unlikely to reseed a latent T cell reservoir, even under suboptimal cART conditions, because romidepsin profoundly restricts de novo HIV infections.


Assuntos
Depsipeptídeos/uso terapêutico , Infecções por HIV/tratamento farmacológico , HIV-1 , Inibidores de Histona Desacetilases/uso terapêutico , Antivirais/farmacologia , Linfócitos T CD4-Positivos/virologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Infecções por HIV/virologia , Humanos , Interferon gama/farmacologia , Monócitos/virologia , Cultura Primária de Células , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
14.
Cancer Biol Ther ; 16(2): 189-200, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25588111

RESUMO

Heterochromatin protein 1α (HP1α) encoded from the CBX5-gene is an evolutionary conserved protein that binds histone H3 di- or tri-methylated at position lysine 9 (H3K9me2/3), a hallmark for heterochromatin, and has an essential role in forming higher order chromatin structures. HP1α has diverse functions in heterochromatin formation, gene regulation, and mitotic progression, and forms complex networks of gene, RNA, and protein interactions. Emerging evidence has shown that HP1α serves a unique biological role in breast cancer related processes and in particular for epigenetic control mechanisms involved in aberrant cell proliferation and metastasis. However, how HP1α deregulation plays dual mechanistic functions for cancer cell proliferation and metastasis suppression and the underlying cellular mechanisms are not yet comprehensively described. In this paper we provide an overview of the role of HP1α as a new sight of epigenetics in proliferation and metastasis of human breast cancer. This highlights the importance of addressing HP1α in breast cancer diagnostics and therapeutics.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Feminino , Humanos , Família Multigênica , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...