Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Pathol ; 25(4): e13451, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590135

RESUMO

When compared with other phylogroups (PGs) of the Pseudomonas syringae species complex, P. syringae pv. syringae (Pss) strains within PG2 have a reduced repertoire of type III effectors (T3Es) but produce several phytotoxins. Effectors within the cherry pathogen Pss 9644 were grouped based on their frequency in strains from Prunus as the conserved effector locus (CEL) common to most P. syringae pathogens; a core of effectors common to PG2; a set of PRUNUS effectors common to cherry pathogens; and a FLEXIBLE set of T3Es. Pss 9644 also contains gene clusters for biosynthesis of toxins syringomycin, syringopeptin and syringolin A. After confirmation of virulence gene expression, mutants with a sequential series of T3E and toxin deletions were pathogenicity tested on wood, leaves and fruits of sweet cherry (Prunus avium) and leaves of ornamental cherry (Prunus incisa). The toxins had a key role in disease development in fruits but were less important in leaves and wood. An effectorless mutant retained some pathogenicity to fruit but not wood or leaves. Striking redundancy was observed amongst effector groups. The CEL effectors have important roles during the early stages of leaf infection and possibly acted synergistically with toxins in all tissues. Deletion of separate groups of T3Es had more effect in P. incisa than in P. avium. Mixed inocula were used to complement the toxin mutations in trans and indicated that strain mixtures may be important in the field. Our results highlight the niche-specific role of toxins in P. avium tissues and the complexity of effector redundancy in the pathogen Pss 9644.


Assuntos
Prunus avium , Prunus , Virulência/genética , Pseudomonas syringae , Prunus avium/metabolismo , Frutas/metabolismo , Mutação/genética , Prunus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
New Phytol ; 237(3): 959-973, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285389

RESUMO

Many strains of Pseudomonas colonise plant surfaces, including the cherry canker pathogens, Pseudomonas syringae pathovars syringae and morsprunorum. We have examined the genomic diversity of P. syringae in the cherry phyllosphere and focused on the role of prophages in transfer of genes encoding Type 3 secreted effector (T3SE) proteins contributing to the evolution of virulence. Phylogenomic analysis was carried out on epiphytic pseudomonads in the UK orchards. Significant differences in epiphytic populations occurred between regions. Nonpathogenic strains were found to contain reservoirs of T3SE genes. Members of P. syringae phylogroups 4 and 10 were identified for the first time from Prunus. Using bioinformatics, we explored the presence of the gene encoding T3SE HopAR1 within related prophage sequences in diverse P. syringae strains including cherry epiphytes and pathogens. Results indicated that horizontal gene transfer (HGT) of this effector between phylogroups may have involved phage. Prophages containing hopAR1 were demonstrated to excise, circularise and transfer the gene on the leaf surface. The phyllosphere provides a dynamic environment for prophage-mediated gene exchange and the potential for the emergence of new more virulent pathotypes. Our results suggest that genome-based epidemiological surveillance of environmental populations will allow the timely application of control measures to prevent damaging diseases.


Assuntos
Bacteriófagos , Prunus avium , Pseudomonas syringae/genética , Transferência Genética Horizontal , Bacteriófagos/genética , Genômica , Genoma Bacteriano , Doenças das Plantas/genética
3.
Plant Pathol ; 71(4): 949-965, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35909801

RESUMO

Bacterial canker is a major disease of stone fruits and is a critical limiting factor to sweet cherry (Prunus avium) production worldwide. One important strategy for disease control is the development of resistant varieties. Partial varietal resistance in sweet cherry is discernible using shoot or whole tree inoculations; however, these quantitative differences in resistance are not evident in detached leaf assays. To identify novel sources of resistance to canker, we used a rapid leaf pathogenicity test to screen a range of wild cherry, ornamental Prunus species and sweet cherry × ornamental cherry hybrids with the canker pathogens, Pseudomonas syringae pvs syringae, morsprunorum races 1 and 2, and avii. Several Prunus accessions exhibited limited symptom development following inoculation with each of the pathogens, and this resistance extended to 16 P. syringae strains pathogenic on sweet cherry and plum. Resistance was associated with reduced bacterial multiplication after inoculation, a phenotype similar to that of commercial sweet cherry towards nonhost strains of P. syringae. Progeny resulting from a cross of a resistant ornamental species Prunus incisa with susceptible sweet cherry (P. avium) exhibited resistance indicating it is an inherited trait. Identification of accessions with resistance to the major bacterial canker pathogens is the first step towards characterizing the underlying genetic mechanisms of resistance and introducing these traits into commercial germplasm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...