Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Lipid Res ; 94: 101268, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38195013

RESUMO

One of the major constituents of mitochondrial membranes is the phospholipids, which play a key role in maintaining the structure and the functions of the mitochondria. However, mitochondria do not synthesize most of the phospholipids in situ, necessitating the presence of phospholipid import pathways. Even for the phospholipids, which are synthesized within the inner mitochondrial membrane (IMM), the phospholipid precursors must be imported from outside the mitochondria. Therefore, the mitochondria heavily rely on the phospholipid transport pathways for its proper functioning. Since, mitochondria are not part of a vesicular trafficking network, the molecular mechanisms of how mitochondria receive its phospholipids remain a relevant question. One of the major ways that hydrophobic phospholipids can cross the aqueous barrier of inter or intraorganellar spaces is by apposing membranes, thereby decreasing the distance of transport, or by being sequestered by lipid transport proteins (LTPs). Therefore, with the discovery of LTPs and membrane contact sites (MCSs), we are beginning to understand the molecular mechanisms of phospholipid transport pathways in the mitochondria. In this review, we will present a brief overview of the recent findings on the molecular architecture and the importance of the MCSs, both the intraorganellar and interorganellar contact sites, in facilitating the mitochondrial phospholipid transport. In addition, we will also discuss the role of LTPs for trafficking phospholipids through the intermembrane space (IMS) of the mitochondria. Mechanistic insights into different phospholipid transport pathways of mitochondria could be exploited to vary the composition of membrane phospholipids and gain a better understanding of their precise role in membrane homeostasis and mitochondrial bioenergetics.


Assuntos
Mitocôndrias , Fosfolipídeos , Fosfolipídeos/metabolismo , Humanos , Animais , Mitocôndrias/metabolismo , Transporte Biológico , Membranas Mitocondriais/metabolismo , Proteínas de Transporte/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1867(5): 130328, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36791826

RESUMO

Human MPV17, an evolutionarily conserved mitochondrial inner-membrane channel protein, accounts for the tissue-specific mitochondrial DNA depletion syndrome. However, the precise molecular function of the MPV17 protein is still elusive. Previous studies showed that the mitochondrial morphology and cristae organization are severely disrupted in the MPV17 knockout cells from yeast, zebrafish, and mammalian tissues. As mitochondrial cristae morphology is strictly regulated by the membrane phospholipids composition, we measured mitochondrial membrane phospholipids (PLs) levels in yeast Saccharomyces cerevisiae MPV17 ortholog, SYM1 (Stress-inducible Yeast MPV17) deleted cells. We found that Sym1 knockout decreases the mitochondrial membrane PL, phosphatidyl ethanolamine (PE), and inhibits respiratory growth at 37 ̊C on rich media. Both the oxygen consumption rate and the steady state expressions of mitochondrial complex II and super-complexes are compromised. Apart from mitochondrial PE defect a significant depletion of mitochondrial phosphatidyl-choline (PC) was noticed in the sym1∆ cells grown on synthetic media at both 30 ̊C and 37 ̊C temperatures. Surprisingly, exogenous supplementation of methylglyoxal (MG), an intrinsic side product of glycolysis, rescues the respiratory growth of Sym1 deficient yeast cells. Using a combination of molecular biology and lipid biochemistry, we uncovered that MG simultaneously restores both the mitochondrial PE/PC levels and the respiration by enhancing cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase 1 (Gpd1) enzymatic activity. Further, MG is incapable to restore respiratory growth of the sym1∆gpd1∆ double knockout cells. Thus, our work provides Gpd1 activation as a novel strategy for combating Sym1 deficiency and PC/PE defects.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Animais , Humanos , Saccharomyces cerevisiae/metabolismo , Aldeído Pirúvico/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Membrana/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mamíferos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Glicerol-3-Fosfato Desidrogenase (NAD+)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...