Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 18(7): 1167-1174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37171660

RESUMO

PURPOSE: Robotic assistance in otologic surgery can reduce the task load of operating surgeons during the removal of bone around the critical structures in the lateral skull base. However, safe deployment into the anatomical passageways necessitates the development of advanced sensing capabilities to actively limit the interaction forces between the surgical tools and critical anatomy. METHODS: We introduce a surgical drill equipped with a force sensor that is capable of measuring accurate tool-tissue interaction forces to enable force control and feedback to surgeons. The design, calibration and validation of the force-sensing surgical drill mounted on a cooperatively controlled surgical robot are described in this work. RESULTS: The force measurements on the tip of the surgical drill are validated with raw-egg drilling experiments, where a force sensor mounted below the egg serves as ground truth. The average root mean square error for points and path drilling experiments is 41.7 (± 12.2) mN and 48.3 (± 13.7) mN, respectively. CONCLUSION: The force-sensing prototype measures forces with sub-millinewton resolution and the results demonstrate that the calibrated force-sensing drill generates accurate force measurements with minimal error compared to the measured drill forces. The development of such sensing capabilities is crucial for the safe use of robotic systems in a clinical context.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Humanos , Mastoidectomia , Cirurgia Assistida por Computador/métodos , Retroalimentação
2.
Laryngoscope Investig Otolaryngol ; 6(5): 1133-1136, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34693002

RESUMO

BACKGROUND: Surgical management of otosclerosis is technically challenging with studies demonstrating that outcomes are commensurate with surgical experience. Moreover, experts apply less force on the ossicular chain during prosthesis placement than their novice counterparts. Given the predicted decreasing patient pool and the rising cost of human temporal bone specimens it has become more challenging for trainees to receive adequate intraoperative or laboratory-based experience in this procedure. As such, there is a need for a low-cost training model for the procedure. Here we describe such a model. METHODS: A surgical model of the middle ear was designed using computer aided design (CAD) software. The model consists of four components, the superior three dimensional (3D)-printed component representing the external auditory canal, a 90° torsion spring representing the incus, a 3D-printed base with a stapedotomy underlying the torsion spring, and a 3D-printed phone holder to facilitate video-recording of trials and subsequent calculation of the force applied on the modeled incus. Force applied on the incus is calculated based on Hooke's Law from post-trial computer-vision analysis of recorded video following experimental determination of the spring constant of the modeled incus. RESULTS: The described model was manufactured with a total cost of $56.50. The spring constant was experimentally determined to be 97.0 mN mm/deg, resulting in an ability to detect force applied to the modeled incus across a range of 1.2 to 5200 mN. CONCLUSIONS: We have created a low-cost middle-ear training model with measurable objective performance outcomes. The range of detectable force exceeds expected values for the task.Level of Evidence: IV.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA