Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(25)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38498947

RESUMO

To describe the way complexity emerges in seemingly simple systems of nature, requires one to attend to two principal questions: how complex patterns appear spontaneously and why a single system can accommodate their inexhaustible variety. It is commonly assumed the pattern formation phenomenon is related to the competition of several types of interactions with disparate length scales. These multi-scale interactions also lead to frustration within the system, resulting in the existence of a manifold of configurations-patterns with qualitatively distinct morphologies. This work explores an alternative approach through a mechanism that leads to a wide range of intricate and topologically non-trivial patterns. The mechanism is described by the self-dual Ginzburg-Landau theory and, possibly, other Maxwell-Higgs models. It gives rise to unique spatial flux and condensate spatial profiles observed in superconductors between the two conventional superconductivity types I and II.

2.
J Phys Chem Lett ; 14(15): 3743-3748, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37043359

RESUMO

By investigating spatial configurations of the intermediate mixed state in an intertype superconductor, it is shown that vortex clustering can be characterized by the sample averaged distribution of the penetrating magnetic field. The clustering is manifested in the two-peak structure of the distribution. The second peak indicates a spot a material occupies in the phase diagram of superconductivity types. The conclusions are general and do not depend on details of the model.

3.
Sci Rep ; 13(1): 5103, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36991022

RESUMO

Light scattering spectroscopy is a powerful tool for studying various media, but interpretation of its results requires a detailed knowledge of how media excitations are coupled to electromagnetic waves. In electrically conducting media, an accurate description of propagating electromagnetic waves is a non-trivial problem because of non-local light-matter interactions. Among other consequences, the non-locality gives rise to the anomalous (ASE) and superanomalous (SASE) skin effects. As is well known, ASE is related to an increase in the electromagnetic field absorption in the radio frequency domain. This work demonstrates that the Landau damping underlying SASE gives rise to another absorption peak at optical frequencies. In contrast to ASE, SASE suppresses only the longitudinal field component, and this difference results in the strong polarization dependence of the absorption. The mechanism behind the suppression is generic and is observed also in plasma. Neither SASE, nor the corresponding light absorption increase can be described using popular simplified models for the non-local dielectric response.

4.
Phys Rev Lett ; 129(19): 193604, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36399754

RESUMO

Entangled photon pairs are key to many novel applications in quantum technologies. Semiconductor quantum dots can be used as sources of on-demand, highly entangled photons. The fidelity to a fixed maximally entangled state is limited by the excitonic fine-structure splitting. This work demonstrates that, even if this splitting is absent, the degree of entanglement cannot reach unity when the excitation pulse in a two-photon resonance scheme has a finite duration. The degradation of the entanglement has its origin in a dynamically induced splitting of the exciton states caused by the laser pulse itself. Hence, in the setting explored here, the excitation process limits the achievable concurrence for entangled photons generated in an optically excited four-level quantum emitter.

5.
Phys Rev Lett ; 128(7): 079901, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35244451

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.127.100402.

6.
Phys Rev Lett ; 127(10): 100402, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34533331

RESUMO

The quantum regression theorem (QRT) is the most widely used tool for calculating multitime correlation functions for the assessment of quantum emitters. It is an approximate method based on a Markov assumption for environmental coupling. In this Letter we quantify properties of photons emitted from a single quantum dot coupled to phonons. For the single-photon purity and the indistinguishability, we compare numerically exact path-integral results with those obtained from the QRT. It is demonstrated that the QRT systematically overestimates the influence of the environment for typical quantum dots used in quantum information technology.

7.
J Phys Chem Lett ; 12(17): 4172-4179, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33896186

RESUMO

Cluster formation is a focus of interdisciplinary research in both chemistry and physics. Here we discuss the exotic example of this phenomenon in the vortex matter of a thin superconductor. In superconducting films, the clustering takes place because of particular properties of the vortex interactions in the crossover or intertype regime between superconductivity types I and II. These interactions are controlled by the two parameters that are responsible for the crossover, Ginzburg-Landau parameter κ, which specifies the superconducting material of the film, and film thickness d, which controls effects due to stray magnetic fields outside the sample. We demonstrate that their competition gives rise to a complex spatial dependence of the interaction potential between vortices, favoring the formation of chainlike vortex clusters.

8.
Phys Rev Lett ; 125(21): 217003, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33275004

RESUMO

It is well known that superconductivity in quasi-one-dimensional (Q1D) materials is hindered by large fluctuations of the order parameter. They reduce the critical temperature and can even destroy the superconductivity altogether. Here it is demonstrated that the situation changes dramatically when a Q1D pair condensate is coupled to a higher-dimensional stable one, as in recently discovered multiband Q1D superconductors. The fluctuations are suppressed even by vanishingly small pair-exchange coupling between different band condensates and the superconductor is well described by the mean field theory. In this case the low dimensionality effects enhance the coherence of the system instead of suppressing it. As a result, the critical temperature of the multiband Q1D superconductor can increase by orders of magnitude when the system is tuned to the Lifshitz transition with the Fermi level close to the edge of the Q1D band.

9.
J Phys Condens Matter ; 32(45): 455702, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32688355

RESUMO

There is a tacit assumption that multiband superconductors are essentially the same as multigap superconductors. More precisely, it is usually assumed that the number of excitation gaps in the single-particle energy spectrum of a uniform superconductor (i.e. number of peaks in the density of states of the superconducting electrons) determines the number of contributing bands in the corresponding superconducting model. Here we demonstrate that contrary to this widely accepted viewpoint, the superconducting magnetic properties are sensitive to the number of contributing bands even when the spectral gaps are degenerate and cannot be distinguished. In particular, we find that the crossover between superconductivity types I and II-the intertype regime-is strongly affected by the difference between characteristic lengths of multiple contributing condensates. The reason for this is that condensates with diverse characteristic lengths, when coexisting in one system, interfere constructively or destructively, which results in multi-condensate magnetic phenomena regardless of the presence/absence of the multigap spectrum of a superconducting multiband material.

10.
J Phys Condens Matter ; 32(7): 075403, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31675734

RESUMO

Superconducting films are usually regarded as type II superconductors even when they are made of a type I material. The reason is the presence of stray magnetic fields that stabilize the vortex matter by inducing long-range repulsive interactions between vortices. While very thin films indeed reach this limit, there is a large interval of thicknesses where magnetic properties of superconducting films cannot be classified as either of the two conventional superconductivity types. Recent calculations revealed that in this interval the system exhibits spontaneous formation of magnetic flux-condensate patterns and superstructures appearing due to the interplay between the long-range stray field effects and proximity to the Bogomolnyi self-duality point. These calculations were based on the periodic in-plane boundary conditions which, as is well known from classical electrodynamics, for systems with long-range interactions can lead to field distortions and considerable discrepancies between results of different calculation methods. Here we demonstrate that similar spontaneous patterns are obtained for superconducting films with open in-plane boundary conditions (vanishing in-plane currents perpendicular to the edges of the finite film) and thus the phenomenon is not an artefact of chosen boundary conditions.

11.
Phys Rev Lett ; 123(13): 137401, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697541

RESUMO

We report on simulations of the degree of polarization entanglement of photon pairs simultaneously emitted from a quantum dot-cavity system that demand revisiting the role of phonons. Since coherence is a fundamental precondition for entanglement and phonons are known to be a major source of decoherence, it seems unavoidable that phonons can only degrade entanglement. In contrast, we demonstrate that phonons can cause a degree of entanglement that even surpasses the corresponding value for the phonon-free case. In particular, we consider the situation of comparatively small biexciton binding energies and either finite exciton or cavity mode splitting. In both cases, combinations of the splitting and the dot-cavity coupling strength are found where the entanglement exhibits a nonmonotonic temperature dependence which enables entanglement above the phonon-free level in a finite parameter range. This unusual behavior can be explained by phonon-induced renormalizations of the dot-cavity coupling g in combination with a nonmonotonic dependence of the entanglement on g that is present already without phonons.

12.
Phys Rev Lett ; 123(1): 017403, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386395

RESUMO

We demonstrate theoretically that the single-photon purity of photons emitted from a quantum dot exciton prepared by phonon-assisted off-resonant excitation can be significantly higher in a wide range of parameters than that obtained by resonant preparation for otherwise identical conditions. Despite the off-resonant excitation, the brightness stays on a high level. These surprising findings exploit the fact that the phonon-assisted preparation is a two-step process where phonons first lead to a relaxation between laser-dressed states while high exciton occupations are reached only with a delay to the laser pulse maximum by adiabatically undressing the dot states. Due to this delay, possible subsequent processes, in particular multiphoton excitations, appear at a time when the laser pulse is almost gone. The resulting suppression of reexcitation processes increases the single-photon purity. Due to the spectral separation of the signal photons from the laser frequencies this enables the emission of high quality single photons not disturbed by a laser background while taking advantage of the robustness of the phonon assisted scheme.

13.
Phys Rev Lett ; 119(17): 176801, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219429

RESUMO

It is commonly assumed that surface plasmon-polariton (SPP) excitations on a metal-dielectric interface decay exponentially inside the metallic sample. Here, we show that in a wide spectral interval the SPP field decays much slower, being inversely proportional to the distance to the interface modified by an additional logarithmic factor. This dependence differs from the standard anomalous skin effect and is provisionally referred to as superanomalous. Its origin is the nonlocality and the logarithmic singularity of the dielectric permittivity in metals. This type of decay is pronounced for SPP modes of higher frequencies, but it is suppressed for light waves.

14.
Sci Rep ; 5: 16515, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26565073

RESUMO

Conventional superconductivity is inevitably suppressed in ultra-small metallic grains for characteristic sizes smaller than the Anderson limit. Experiments have shown that above the Anderson limit the critical temperature may be either enhanced or reduced when decreasing the particle size, depending on the superconducting material. In addition, there is experimental evidence that whether an enhancement or a reduction is found depends on the strength of the electron-phonon interaction in the bulk. We reveal how the strength of the e-ph interaction interplays with the quantum-size effect and theoretically obtain the critical temperature of the superconducting nanograins in excellent agreement with experimental data. We demonstrate that strong e-ph scattering smears the peak structure in the electronic density-of-states of a metallic grain and enhances the electron mass, and thereby limits the highest Tc achievable by quantum confinement.

15.
Phys Rev Lett ; 106(4): 047005, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21405351

RESUMO

Recent observation of unusual vortex patterns in MgB(2) single crystals raised speculations about possible "type-1.5" superconductivity in two-band materials, mixing the properties of both type-I and type-II superconductors. However, the strict application of the standard two-band Ginzburg-Landau (GL) theory results in simply proportional order parameters of the two bands-and does not support the "type-1.5" behavior. Here we derive the extended GL formalism (accounting all terms of the next order over the small τ=1-T/T(c) parameter) for a two-band clean s-wave superconductor and show that the two condensates generally have different spatial scales, with the difference disappearing only in the limit T→T(c). The extended version of the two-band GL formalism improves the validity of GL theory below T(c) and suggests revisiting the earlier calculations based on the standard model.

16.
Phys Rev Lett ; 105(15): 157401, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230936

RESUMO

Time-dependent lattice fluctuations of an optically excited strongly confined quantum dot are investigated with the aim to analyze the characteristics commonly used for identifying the presence of squeezed phonon states. It is demonstrated that the appearance of fluctuations oscillating with twice the phonon frequency, commonly regarded as a clear indication of squeezed states, cannot be considered as such. The source of the discrepancy with earlier investigations is discussed. Conditions for generating a squeezed state by using a two-pulse excitation are analyzed.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(5 Pt 2): 056202, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20365055

RESUMO

We extend the asymptotic boundary layer (ABL) method, originally developed for stable resonator modes, to the description of individual wave functions localized around unstable periodic orbits. The formalism applies to the description of scar states in fully or partially chaotic quantum systems, and also allows for the presence of smooth and sharp potentials, as well as magnetic fields. We argue that the separatrix wave function provides the largest contribution to the scars on a single wave function. This agrees with earlier results on the wave-function asymptotics and on the quantization condition of the scar states. Predictions of the ABL formalism are compared with the exact numerical solution for a strip resonator with a parabolic confinement potential and a magnetic field.

18.
Phys Rev Lett ; 98(22): 227403, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17677878

RESUMO

The dynamics of strongly confined laser driven semiconductor quantum dots coupled to phonons is studied theoretically by calculating the time evolution of the reduced density matrix using a numerical path integral method. We explore the cases of long pulses, strong dot-phonon and dot-laser coupling, and high temperatures, which, up to now, have been inaccessible. We find that the phonon-induced damping of Rabi rotations is a nonmonotonic function of the laser field that is increasing at low fields and decreasing at high fields. This results in a reappearance of Rabi rotations at high fields. This phenomenon is of a general nature which occurs for all temperatures and carrier-phonon coupling strengths.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 70(5 Pt 1): 051807, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15600646

RESUMO

The distortion due to a fixed point impurity with variable charge placed in the center of a classical harmonically confined two-dimensional (2D) large Coulomb cluster is studied. We find that the net topological charge (N(-)-N+ ) of the system is always equal to six independent of the position and charge of the impurity. In comparison with a 2D cluster without impurity charge, only the breathing mode remains unchanged. The screening length is found to be a highly nonlinear function of the impurity charge. For values of the impurity charge smaller than the charge of the other particles, the system has almost the same screening strength. When the impurity charge is larger, the screening length is strongly enhanced. This result can be explained by the competition between the different forces active in the system.

20.
Phys Rev Lett ; 75(23): 4333, 1995 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-10059880
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...