Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Microbiol ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778742

RESUMO

Nitric oxide (˙NO) is a free radical that induces nitrosative stress, which can jeopardize cell viability. Yeasts have evolved diverse detoxification mechanisms to effectively counteract ˙NO-mediated cytotoxicity. One mechanism relies on the flavohemoglobin Yhb1, whereas a second one requires the S-nitrosoglutathione reductase Fmd2. To investigate heme-dependent activation of Yhb1 in response to ˙NO, we use hem1Δ-derivative Schizosaccharomyces pombe strains lacking the initial enzyme in heme biosynthesis, forcing cells to assimilate heme from external sources. Under these conditions, yhb1+ mRNA levels are repressed in the presence of iron through a mechanism involving the GATA-type transcriptional repressor Fep1. In contrast, when iron levels are low, the transcription of yhb1+ is derepressed and further induced in the presence of the ˙NO donor DETANONOate. Cells lacking Yhb1 or expressing inactive forms of Yhb1 fail to grow in a hemin-dependent manner when exposed to DETANONOate. Similarly, the loss of function of the heme transporter Str3 phenocopies the effects of Yhb1 disruption by causing hypersensitivity to DETANONOate under hemin-dependent culture conditions. Coimmunoprecipitation and bimolecular fluorescence complementation assays demonstrate the interaction between Yhb1 and the heme transporter Str3. Collectively, our findings unveil a novel pathway for activating Yhb1, fortifying yeast cells against nitrosative stress.

2.
Mol Microbiol ; 120(4): 608-628, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644673

RESUMO

The transporter Str3 promotes heme import in Schizosaccharomyces pombe cells that lack the heme receptor Shu1 and are deficient in heme biosynthesis. Under microaerobic conditions, the peroxiredoxin Tpx1 acts as a heme scavenger within the Str3-dependent pathway. Here, we show that Srx1, a sulfiredoxin known to interact with Tpx1, is essential for optimal growth in the presence of hemin. The expression of Srx1 is induced in response to low iron and repressed under iron repletion. Coimmunoprecipitation and bimolecular fluorescence complementation experiments show that Srx1 interacts with Str3. Although the interaction between Srx1 and Str3 is weakened, it is still observed in tpx1Δ mutant cells or when Str3 is coexpressed with a mutant form of Srx1 (mutD) that cannot bind Tpx1. Further analysis by absorbance spectroscopy and hemin-agarose pull-down assays confirms the binding of Srx1 to hemin, with an equilibrium constant value of 2.56 µM. To validate the Srx1-hemin association, we utilize a Srx1 mutant (mutH) that fails to interact with hemin. Notably, when Srx1 binds to hemin, it partially shields hemin from degradation caused by hydrogen peroxide. Collectively, these findings elucidate an additional function of the sulfiredoxin Srx1, beyond its conventional role in oxidative stress defense.

3.
Med Mycol ; 59(5): 465-475, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32844181

RESUMO

Across the world, many commercial poultry flocks and captive birds are threatened by infection with Aspergillus fumigatus. Susceptibility to aspergillosis varies among birds; among galliform birds specifically, morbidity and mortality rates seem to be greater in turkeys than in chickens. Little is known regarding the features of avian immune responses after inhalation of Aspergillus conidia, and to date, scarce information on inflammatory responses during aspergillosis exists. Thus, in the present study, we aimed to improve our understanding of the interactions between A. fumigatus and economically relevant galliform birds in terms of local innate immune responses. Intra-tracheal aerosolization of A. fumigatus conidia in turkey and chicken poults led to more severe clinical signs and lung lesions in turkeys, but leukocyte recovery from lung lavages was higher in chickens at 1dpi only. Interestingly, only chicken CD8+ T lymphocyte proportions increased after infection. Furthermore, the lungs of infected chickens showed an early upregulation of pro-inflammatory cytokines, including IL-1ß, IFN-γ and IL-6, whereas in turkeys, most of these cytokines showed a downregulation or a delayed upregulation. These results confirmed the importance of an early pro-inflammatory response to ensure the development of an appropriate anti-fungal immunity to avoid Aspergillus dissemination in the respiratory tract. In conclusion, we show for the first time that differences in local innate immune responses between chickens and turkeys during aspergillosis may determine the outcome of the disease.


Aspergillus fumigatus infection may cause mortality in poultry, depending on species sensitivity. This study confirms the earlier activation of chickens' pro-inflammatory effectors to control Aspergillus dissemination, whereas turkeys' immune response enables the exacerbation of lung lesions.


Assuntos
Aspergilose/imunologia , Aspergilose/veterinária , Aspergillus fumigatus/imunologia , Galinhas/imunologia , Citocinas/metabolismo , Esporos Fúngicos/imunologia , Perus/imunologia , Animais , Aspergilose/microbiologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Galinhas/microbiologia , Modelos Animais de Doenças , Humanos , Imunidade Inata , Peptídeos , Perus/microbiologia
4.
Mol Microbiol ; 115(4): 699-722, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33140466

RESUMO

Str3 is a transmembrane protein that mediates low-affinity heme uptake in Schizosaccharomyces pombe. Under iron-limiting conditions, Str3 remains at the cell surface in the presence of increasing hemin concentrations. Using a proximity-dependent biotinylation approach coupled to mass spectrometry and coimmunoprecipitation assays, we report that the peroxiredoxin Tpx1 is a binding partner of Str3. Under microaerobic conditions, cells deficient in heme biosynthesis and lacking the heme receptor Shu1 exhibit poor hemin-dependent growth in the absence of Tpx1. Analysis of membrane protein preparations from iron-starved hem1Δ shu1Δ str3Δ tpx1Δ cells coexpressing Str3-GFP and TAP-Tpx1 showed that TAP-Tpx1 is enriched in membrane protein fractions in response to hemin. Bimolecular fluorescence complementation assays brought additional evidence that an interaction between Tpx1 and Str3 occurs at the plasma membrane. Results showed that Tpx1 exhibits an equilibrium constant value of 0.26 µM for hemin. The association of Tpx1 with hemin protects hemin from degradation by H2 O2 . The peroxidase activity of hemin is lowered when it is bound to Tpx1. Taken together, these results revealed that Tpx1 is a novel interacting partner of Str3. Our data are the first example of an interaction between a cytoplasmic heme-binding protein and a cell-surface heme transporter.


Assuntos
Hemeproteínas/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Motivos de Aminoácidos , Biotinilação , Membrana Celular/metabolismo , DNA Fúngico , Heme/metabolismo , Hemeproteínas/genética , Hemina/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro/metabolismo , Mutação , Oxirredução , Ligação Proteica , Schizosaccharomyces/enzimologia
5.
Curr Genet ; 66(4): 703-711, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32185489

RESUMO

Iron is essential for nearly all aerobic organisms. One source of iron in nature is in the form of heme. Due to its critical physiological importance as a cofactor for several enzymes, organisms have evolved various means to secure heme for their needs. In the case of heme prototrophs, these organisms possess a highly conserved eight-step biosynthetic pathway. Another means used by many organisms is to acquire heme from external sources. As opposed to the knowledge of enzymes responsible for heme biosynthesis, the nature of the players and mechanisms involved in the acquisition of exogenous heme is limited. This review focuses on a description of newly discovered proteins that have novel functions in heme assimilation in the model organism Schizosaccharomyces pombe. This tractable model allows the use of the power of genetics to selectively block heme biosynthesis, setting conditions to investigate the mechanisms by which external heme is taken up by the cells. Studies have revealed that S. pombe possesses two independent heme uptake systems that require Shu1 and Str3, respectively. Heme-bound iron is captured by Shu1 at the cell surface, triggering its internalization to the vacuole with the aid of ubiquitinated proteins and the ESCRT machinery. In the case of the plasma membrane transporter Str3, it promotes cellular heme import in cells lacking Shu1. The discovery of these two pathways may contribute to gain novel insights into the mechanisms whereby fungi assimilate heme, which is an essentially biological process for their ability to invade and colonize new niches.


Assuntos
Heme/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fungos/metabolismo , Heme/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...