Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 174243, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38944309

RESUMO

Enhancing the agroecosystems carbon (C) sink function for climate mitigation faced challenges, particularly with traditional measures with limited suitability for increasing soil organic carbon (SOC) stocks. Inducing a SOC undersaturation in the topsoil by abrupt subsoil admixture is a way to create an additional C sink. However, the deep tillage traditionally used for this topsoil dilution was not always successful. It was due to a lack of knowledge and suitable approaches to record the effect of all relevant factors in SOC recovery, including soil conditions and fertilizer forms. We addressed these problems by establishing a three-factorial experiment: I) "moderate topsoil dilution," II) "N fertilization form," and III) "soil erosion state," representing three soil types in the hummocky ground moraine landscape of NE Germany. SOC dynamics were determined over a year of winter rye cropping using a novel robotic chamber system capable of measuring CO2 exchange on 36 experimental plots with a reduced methodological bias than previous measuring systems. The averaged net ecosystem carbon balance, a proxy for SOC stock change, indicated that topsoil dilution only reduced further SOC losses. The N fertilizer form had a significantly stronger and more differentiated effect. While the mineral N fertilization consistently produced only C sources, the organic fertilization, in combination with the diluted topsoil, led to a C sink. This C-sink function was, however, more pronounced in the eroded soil than in the non-eroded soil. Overall, the results have made clear that the impact of topsoil dilution on the further development of the SOC stock is only possible if the effect of other relevant factors, such as N fertilizer form and erosion state, are taken into account.

2.
Sci Rep ; 11(1): 20852, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675299

RESUMO

Drought and the availability of mineable phosphorus minerals used for fertilization are two of the important issues agriculture is facing in the future. High phosphorus availability in soils is necessary to maintain high agricultural yields. Drought is one of the major threats for terrestrial ecosystem performance and crop production in future. Among the measures proposed to cope with the upcoming challenges of intensifying drought stress and to decrease the need for phosphorus fertilizer application is the fertilization with silica (Si). Here we tested the importance of soil Si fertilization on wheat phosphorus concentration as well as wheat performance during drought at the field scale. Our data clearly showed a higher soil moisture for the Si fertilized plots. This higher soil moisture contributes to a better plant performance in terms of higher photosynthetic activity and later senescence as well as faster stomata responses ensuring higher productivity during drought periods. The plant phosphorus concentration was also higher in Si fertilized compared to control plots. Overall, Si fertilization or management of the soil Si pools seem to be a promising tool to maintain crop production under predicted longer and more serve droughts in the future and reduces phosphorus fertilizer requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...