Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1227487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37731819

RESUMO

Endometrial-factor induced infertility remains one of the most significant pathology among all fertility disorders. Stem cell-based therapy is considered to be the next-generation approach. However, there are still issues about successfully retrieving human endometrium-derived mesenchymal stem/stromal cells (hEnMSCs). Moreover, we need to establish a better understanding of the effect of hEnMSCs on the endometrial recovery and the clinical outcome. According to these challenges we created a multi-step study. Endometrium samples were collected from females undergoing assisted reproductive technology (ART) procedure due to couple infertility. These samples were obtained using an endometrium scratching. The hEnMSCs were isolated from endometrium samples and characterized with flow cytometry analysis. Groups of endometrium injured female mice were established by the mechanical injury to uterine horns and the intraperitoneal chemotherapy. The hEnMSCs suspension was injected to some of the studied female mice at approved time intervals. Histological changes of mice uterine horns were evaluated after Masson's trichrome original staining, hematoxylin and eosin (H&E) staining. The fertility assessment of mice was performed by counting formed embryo implantation sites (ISs). The expression of fibrosis related genes (Col1a1, Col3a1, Acta2, and CD44) was evaluated by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Results showed that endometrium scratching is an effective procedure for mesenchymal stem/stromal cells (MSCs) collection from human endometrium. Isolated hEnMSCs met the criteria for defining MSCs. Moreover, hEnMSCs-based therapy had a demonstrably positive effect on the repair of damaged uterine horns, including a reduction of fibrosis, intensity of inflammatory cells such as lymphocytes and polymorphonuclear cells (PMNs) and the number of apoptotic bodies. The injured mice which recieved hEnMSCs had higher fertility in comparison to the untreated mice. Gene expression was reflected in histology changes and outcomes of conception. In conclusion, hEnMSCs demonstrated a positive impact on endometrium restoration and outcomes of endometrial-factor induced infertility. Further exploration is required in order to continue exploring the multifactorial associations between stem cell therapy, gene expression, endometrial changes and reproductive health, so we can identify individually effective and safe treatment strategies for endometrial-factor induced infertility, which is caused by mechanical effect or chemotherapy, in daily clinical practise.

2.
Front Cell Dev Biol ; 11: 1217808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576599

RESUMO

Background: Unexplained infertility (UI) can be a frustrating and challenging diagnosis for doctors and couples as it can be difficult to understand why they are unable to conceive despite increasing diagnostic tools. Assisted reproductive technology (ART) procedures have been successfully applied to many couples aiming to overcome UI. However, they can be not only expensive but also require multiple cycles to achieve a successful pregnancy. The endometrium and the follicular fluid have been investigated as target tissues not only to determine the cause of UI but also to increase conception rates. Results: In this study, we analyzed the outcomes of ART in 223 UI couples and gene expression associated with DNA modification, cell death, immune response and senescence (TET1, TET2, BCL2, BAK1, HMGA2, IL-6, IL-8) in infertile women's endometrium and follicular fluid. We found significant differences in women who successfully got pregnant compared to women unable to conceive depending on age, duration of infertility, number of retrieved oocytes, zygotes, transferred embryos. Further, the expression of genes BAK1 (pro-apoptotic), TET2 (associated with epigenetic DNA modification) and IL-6 (associated with immune responses) were significantly higher in the endometrium of women who successfully got pregnant. Conclusion: Younger parental age couples showed higher ART success rates, shorter duration of infertility, higher number of retrieved oocytes, zygotes and transferred embryos. The gene expression analysis revealed significant changes in the endometrium depending on genes associated with cell death and immune response which were upregulated in females with diagnosed unexplained infertility.

3.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768772

RESUMO

The prevalence of infertility is getting higher over the years. The increasing age of first-time parents, although economically more desirable, can cause various biological problems from low natural conception rate to poor pregnancy outcomes. The growing demand for assisted reproductive technology procedures worldwide draws medical specialists' and scientists' attention to various elements which could lead to successful conception, such as follicular fluid (FF) and hormones. In this study, we analyzed the effects of exposure to follicle-stimulating hormone (FSH) on FF-derived stromal cells isolated from females admitted for treatment due to infertility, participating in assisted reproductive technologies procedures. We demonstrated that FF stromal cells are positive for mesenchymal stromal cell surface markers (CD90+, CD44+, CD166+) and showed that FSH has no impact on FF stromal cell morphology yet lowers proliferation rate. Using a real-time polymerase chain reaction method, we indicated that the expression of PTGS2 is significantly downregulated in FF sediment cells of patients who did not conceive; furthermore, we showed that FSH can affect the expression of ovarian follicle development and FSH response-related genes differentially depending on the length of exposure and that levels of ovulatory cascade genes differ in conceived and not-conceived patients' FF stromal cells. Using mass spectrometry analysis, we identified 97 proteins secreted by FF stromal cells. The identified proteins are related to stress response, positive regulation of apoptotic cell clearance and embryo implantation.


Assuntos
Hormônio Foliculoestimulante , Infertilidade , Gravidez , Feminino , Humanos , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Líquido Folicular/metabolismo , Folículo Ovariano/metabolismo , Hormônio Foliculoestimulante Humano , Infertilidade/metabolismo , Células Estromais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA