Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577635

RESUMO

Insects have developed remarkable adaptations to effectively interact with plant secondary metabolites and utilize them as cues to identify suitable hosts. Consequently, humans have used aromatic plants for centuries to repel mosquitoes. The repellent effects of plant volatile compounds are mediated through olfactory structures present in the antennae, and maxillary palps of mosquitoes. Mosquito maxillary palps contain capitate-peg sensilla, which house three olfactory sensory neurons, of which two are mainly tuned to either carbon dioxide or octenol - two animal host odorants. However, the third neuron, which expresses the OR49 receptor, has remained without a known ecologically-relevant odorant since its initial discovery. In this study, we used odorant mixtures and terpenoid-rich Cannabis essential oils to investigate the activation of OR49. Our results demonstrate that two monoterpenoids, borneol and camphor, selectively activate OR49, and OR9-expressing neurons, as well as the MD3 glomerulus in the antennal lobe. We confirm that borneol repels female mosquitoes, and knocking out the gene encoding the OR49 receptor suppresses the response of the corresponding olfactory sensory neuron. Importantly, this molecular mechanism of action is conserved across culicine mosquito species, underscoring its significance in their olfactory systems.

2.
iScience ; 26(5): 106752, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37234092

RESUMO

In insects, specialized feeding on the phloem sap (containing mainly the sugar sucrose) has evolved only in some hemipteran lineages. This feeding behavior requires an ability to locate feeding sites buried deeply within the plant tissue. To determine the molecular mechanism involved, we hypothesized that the phloem-feeding whitefly Bemisia tabaci relies on gustatory receptor (GR)-mediated sugar sensing. We first conducted choice assays, which indicated that B. tabaci adults consistently choose diets containing higher sucrose concentrations. Next, we identified four GR genes in the B. tabaci genome. One of them, BtabGR1, displayed significant sucrose specificity when expressed in Xenopus oocytes. Silencing of BtabGR1 significantly interfered with the ability of B. tabaci adults to discriminate between non-phloem and phloem concentrations of sucrose. These findings suggest that in phloem feeders, sugar sensing by sugar receptors might allow tracking an increasing gradient of sucrose concentrations in the leaf, leading eventually to the location of the feeding site.

3.
Parasit Vectors ; 15(1): 422, 2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369215

RESUMO

BACKGROUND: Mosquitoes are responsible for disease transmission worldwide. They possess the ability to discriminate between different ecological resources, including nectar sources, animal hosts and oviposition sites, a feature mediated by their olfactory system. Insect repellents, such as N,N-diethyl-meta-toluamide (also called DEET), have been shown to activate and inhibit mosquito odorant receptors, resulting in behavioral modulation. This and other repellents currently available for personal protection against mosquitoes are topically applied to the skin and operate at a short range. In our search for potential long-range inhibitors of attractants to human hosts, we have hypothesized that the shared chemical similarities between indole and DEET may confer the former with the ability to block odorant receptor function and inhibit human host attraction in a similar way as DEET. METHODS: We used the two-electrode voltage clamp system to assay Xenopus laevis oocytes as a platform to compare the pharmacological effect of commercially available insect repellents and indole on the Aedes aegypti (R)-1-octen-3-ol receptor, OR8, a receptor involved in the decision-making of female mosquitoes to identify human hosts. We also conducted arm-in-a-cage and wind-tunnel bioassays to explore the effect of indole on human host-seeking female Aedes aegypti mosquitoes. RESULTS: Our results demonstrate that indole inhibited the Aedes aegypti (R)-1-octen-3-ol receptor OR8. In our arm-in-a-cage assay, 1 M of DEET reduced mosquito visits on average by 69.3% while the same indole concentration achieved 97.8% inhibition. This effect of indole on flight visits was dose-dependent and disappeared at 1 µM. In the flight tunnel, indole elicited on average 27.5% lower speed, 42.3% lower upwind velocity and 30.4% higher tortuosity compared to the control. CONCLUSIONS: Indole significantly inhibits OR8 activation by (R)-1-octen-3-ol, mosquito visits to a human hand and long-range human host-seeking. The volatility of indole may be leveraged to develop a novel insect repellent in the context of personal mosquito protection.


Assuntos
Aedes , Indóis , Repelentes de Insetos , Receptores Odorantes , Animais , Feminino , Humanos , Aedes/fisiologia , DEET/farmacologia , Indóis/farmacologia , Repelentes de Insetos/farmacologia
4.
Nanomaterials (Basel) ; 12(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364525

RESUMO

An original method was proposed to reduce the quenching of the NIR fluorescence of colloidal solutions of 0.1 at. % Nd3+: LaF3 nanoparticles (NPs) synthesized by aqueous co-precipitation method followed by hydrothermal microwave treatment. For this, an aqueous colloidal solution of NPs was precipitated by centrifugation and dissolved in the same volume of DMSO. The kinetics of static fluorescence quenching of Nd3+ donors of doped NPs dispersed in two solvents was analyzed to determine and to compare the concentrations of OH- quenching acceptors uniformly distributed throughout the volume of the NPs. The dependences of the relative fluorescence quantum yield φ of colloidal solutions on the concentration of OH- groups in the NPs were calculated and were also used to determine concentration of acceptors in the volume of NPs in different solvents. It was found that the concentration of OH- groups in NPs dispersed in DMSO is almost two times lower than in NPs dispersed in water. This gives an almost two-fold increase in the relative fluorescence quantum yield φ for the former. The sizes of synthesized NPs were monitored by common TEM and by applying a rapid procedure based on optical visualization of the trajectories of the Brownian motion of NPs in solution using a laser ultramicroscope. The use of two different methods made it possible to obtain more detailed information about the studied NPs.

5.
Nanoscale ; 14(27): 9910-9917, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35781487

RESUMO

We have proposed, implemented and investigated a novel, efficient quantum emitter based on an atomic-sized Ag nanocluster in a plasmonic resonator. The quantum emitter enables the realization of: (1) ultra-bright fluorescence, (2) narrow-band emission down to 4 nm, (3) ultra-short fluorescence lifetime. The fluorescence cross-section of a quantum emitter is on the order of σ ∼ 10-14 cm2, which is comparable to the largest fluorescence cross-sections of dye molecules and quantum dots, and enables a light source with a record high intensity known only for plasmon nanolasers. The results presented suggest a unique method for fabricating nanoprobes with high brightness and wavelength-tunable spectrally narrow fluorescence, which is needed for multiplex diagnostics and detection of substances at extremely low concentrations.

6.
Insect Biochem Mol Biol ; 139: 103651, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34582989

RESUMO

Indole-sensitive odorant receptors or indolORs belong to a mosquito-specific expansion as ancient as the Culicidae lineage. Brachyceran flies appeared to lack representative members of this group despite the importance of indolics in this important group of dipterans. To explore whether indolORs occur in other brachyceran species, we searched for candidate indolORs in Drosophila melanogaster. Using phylogenetic tools, we show that D. melanogaster OR30a, OR43a, and OR49b form a distinct monophyletic lineage with mosquito indolORs. To explore a potential functional orthology with indolORs, we expressed these three Drosophila ORs in Xenopus laevis oocytes and measured their responses to a panel of indolic compounds. We provide evidence that OR30a, OR43a, and OR49b exhibit high sensitivity to indoles. Along with the recent discovery of indolORs in the housefly Musca domestica, our findings suggest that indolORs are a widespread feature of the peripheral olfactory systems of Diptera.


Assuntos
Drosophila melanogaster/genética , Indóis/farmacologia , Receptores Odorantes/genética , Animais , Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Receptores Odorantes/metabolismo
7.
Environ Sci Technol ; 55(15): 10365-10377, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34260209

RESUMO

Humification is a ubiquitous natural process of biomass degradation that creates multicomponent systems of nonliving organic matter, including dissolved organic matter (DOM) and humic substances (HS) in water environments, soils, and organic rocks. Despite significant differences in molecular composition, the optical properties of DOM and HS are remarkably similar, and the reason for this remains largely unknown. Here, we employed fluorescence spectroscopy with (sub)picosecond resolution to elucidate the role of electronic interactions within DOM and HS. We revealed an ultrafast decay component with a characteristic decay lifetime of 0.5-1.5 ps and spectral diffusion originating from excitation energy transfer (EET) in the system. The rate of EET was positively correlated to the fraction of aromatic species and tightness of aromatic species packing. Diminishing the number of EET donor-acceptor pairs by reduction with NaBH4 (decrease of the acceptor number), decrease of pH (decrease of the electron-donating ability), or decrease of the average particle size by filtration (less donor-acceptor pairs within a particle) resulted in a lower impact of the ultrafast component on fluorescence decay. Our results uncover the role of electronic coupling among fluorophores in the formation of DOM and HS optical properties and provide a framework for studying photophysical processes in heterogeneous systems of natural fluorophores.


Assuntos
Substâncias Húmicas , Solo , Biomassa , Transferência de Energia , Substâncias Húmicas/análise , Espectrometria de Fluorescência
8.
J Chem Phys ; 153(17): 174303, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167650

RESUMO

Electron-phonon interaction strongly affects and often limits charge transport in organic semiconductors (OSs). However, approaches to its experimental probing are still in their infancy. In this study, we probe the local electron-phonon interaction (quantified by the charge-transfer reorganization energy) in small-molecule OSs by means of Raman spectroscopy. Applying density functional theory calculations to four series of oligomeric OSs-polyenes, oligofurans, oligoacenes, and heteroacenes-we extend the previous evidence that the intense Raman vibrational modes considerably contribute to the reorganization energy in several molecules and molecular charge-transfer complexes, to a broader scope of OSs. The correlation between the contribution of the vibrational mode to the reorganization energy and its Raman intensity is especially prominent for the resonance conditions. The experimental Raman spectra obtained with various excitation wavelengths are in good agreement with the theoretical ones, indicating the reliability of our calculations. We also establish for the first time relations between the spectrally integrated Raman intensity, the reorganization energy, and the molecular polarizability for the resonance and off-resonance conditions. The results obtained are expected to facilitate the experimental studies of the electron-phonon interaction in OSs for an improved understanding of charge transport in these materials.

9.
Int J Mol Sci ; 21(17)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859090

RESUMO

Thioflavin T (ThT) assay is extensively used for studying fibrillation kinetics in vitro. However, the differences in the time course of ThT fluorescence intensity and lifetime and other physical parameters of the system, such as particle size distribution, raise questions about the correct interpretation of the aggregation kinetics. In this work, we focused on the investigation of the mechanisms, which underlay the difference in sensitivity of ThT fluorescence intensity and lifetime to the formation of protein aggregates during fibrillation by the example of insulin and during binding to globular proteins. The assessment of aggregate sizes and heterogeneity was performed using dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Using the sub-nanosecond resolution measurements, it was shown that the ThT lifetime is sensitive to the appearance of as much as a few percent of ThT bound to the high-affinity sites that occur simultaneously with an abrupt increase of the average particle size, particles concentration, and size heterogeneity. The discrepancy between ThT fluorescence intensity and a lifetime can be explained as the consequence of a ThT molecule fraction with ultrafast decay and weak fluorescence. These ThT molecules can only be detected using time-resolved fluorescence measurements in the sub-picosecond time domain. The presence of a bound ThT subpopulation with similar photophysical properties was also demonstrated for globular proteins that were attributed to non-specifically bound ThT molecules with a non-rigid microenvironment.


Assuntos
Amiloide/química , Benzotiazóis/química , Corantes Fluorescentes/química , Difusão Dinâmica da Luz , Humanos , Nanopartículas , Tamanho da Partícula
10.
Nanotechnology ; 28(3): 035401, 2017 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-27928995

RESUMO

The mechanism of upconversion at the nanoscale is still under discussion. In this paper, we report on the experimental results of anti-Stokes luminescence kinetics in the upconversion nanoparticles of ß-NaYF4: 20%Yb3+; 0.6%Tm3+. The parameters of the luminescence kinetics were found to be unambiguously dependent on the number of excitation quanta n, which are necessary for certain transitions between the energy states of thulium ions. The observed correlation has been explained by means of the long-lasting energy migration between the ytterbium ions. The spread in time between the luminescent maxima of the corresponding thulium transitions not only shows the nonlinear character of upconversion, but also reveals the time scale of energy migration as well. From these, we derive that the conventional Förster formalism applied to the estimation of energy transfer efficiency in UCNP-fluorophore pairs can provide misleading results.

12.
Faraday Discuss ; 184: 237-49, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26403863

RESUMO

We studied the dynamics in ultrathin subsurface layers of an amorphous polymer by the spectra of single fluorescent molecules embedded into the layer by vapor deposition and subsequent controlled diffusion to the desired depth in ≈0.5 nm steps. The spectral trails of single molecules were recorded at 4.5 K as a function of diffusion depth. In depths shallower than 20 nm, the spectral dynamics deviate from those deep in the bulk. Less than 5 nm deep, the linewidths increase rapidly, whereas the number of detected molecules decreases. No zero-phonon lines were observed closer than 0.5 nm to the polymer surface. Possible physical reasons of the observed phenomena are discussed.

13.
J Chem Phys ; 140(20): 204907, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24880325

RESUMO

We studied the spectral dynamics of single fluorescent dye molecules embedded in ultrathin films (5 - 100 nm) of the amorphous polymer polyisobutylene at cryogenic temperatures and its variation with film thickness. Noticeable portion of molecules in the ensemble shows a behavior which is inconsistent with the standard tunneling model: Their spectral lines are subject to irreversible spectral jumps, continuous shifting, and abrupt chaotic changes of the linewidth or jumping rate. In films thinner than 100 nm, the occurrence of "non-standard" spectral behavior increases with decreasing sample thickness at fixed excitation intensity. In addition, it also increases with laser intensity.

14.
J Phys Chem B ; 110(1): 227-33, 2006 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-16471526

RESUMO

The effect of high pressure on the optical dephasing of chromophores in organic polymers at low temperature is evaluated within the stochastic sudden jump two-level-system (TLS) model. The approximations within the "standard" TLS model cannot account for the observed pressure dependence of the pure dephasing rate without ad hoc assumptions about changes in the TLS density of states. However, the photon echo model of Geva and Skinner for disordered systems can be used to model pressure-dependent optical dephasing results for a variety of doped polymer systems without assuming changes in the TLS density of states. The relative importance of pressure-induced changes in TLS density, chromophore-TLS coupling, and TLS-phonon coupling is evaluated by fitting experimental high-pressure photon echo results to the TLS model.

15.
J Chem Phys ; 122(24): 244705, 2005 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-16035791

RESUMO

Spectra of single tetra-tert-butylterrylene chromophore molecules embedded in an amorphous polyisobutylene matrix as microprobes were recorded. The individual temperature dependences of the spectral linewidths for the same single molecules (SMs) in a broad temperature interval (1.6 < T < 40 K) have been measured. This enabled us to separate the contributions of tunneling two-level systems and quasilocalized low-frequency vibrational modes (LFMs) to the observed linewidths. The analysis of the T dependences yields the values of LFM frequencies and SM-LFM coupling constants for the LFMs in the local environment of a given chromophore. Pronounced distributions of the observed parameters of LFMs were found. This result can be regarded as the first direct experimental proof of the localized nature of LFMs in glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...