Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 287(Pt 3): 132180, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34560498

RESUMO

Environmental consequences during wastewater management are vital and getting increased attention to interrupt any possible disease transmission pathways. Evidence of bioaerosolization of pathogen from wastewater to atmosphere during wastewater treatment have been highlighted previously. Understanding aerosol-based transmission in wastewater treatment plant (WWTP) is important because of the hazard it presents to the workers involved or to the population around and appears to be very significant during pandemic occurrences. This work aims to evaluate the possibility of pathogenic content of wastewater getting aerosolized during treatment by synthesizing the evidence on the potential aerosol generating treatment phases of WWTP, bioaerosol microbial composition, emission load and the factors affecting the bioaerosol formation. We also present some potential control strategies to take up in WWTP which may be useful to avoid such occurrences. Implementation of Aeration based strategies (use of diffused, submerged aeration, reduction in aeration rate), Improved ventilation based strategies (effective ventilation with adequate supply of clean air, minimizing air recirculation, supplementation with infection control measures such as filtration, irradiation), Improved protection based strategy (periodic monitoring of disinfection efficiency, pathogenic load of wastewater, improved operation policy) and other strategies (provision of buffer zone, wind shielding, water spraying on aerosol, screened surface of treatment units) could be very much relevant and significant in case of disease outbreak through aerosol formation in wastewater environment. Recent progress in sensor-based data collection, analysis, cloud-based storage, and early warning techniques in WWTP may help to reduce the risk of infectious transmission, especially during a pandemic situation.


Assuntos
Monitoramento Ambiental , Purificação da Água , Aerossóis/análise , Atmosfera , Humanos , Águas Residuárias
2.
Sci Rep ; 11(1): 19393, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588479

RESUMO

In recent years, the use of bacteriophages (or 'phages') against multidrug-resistant (MDR) bacteria including Pseudomonas aeruginosa has drawn considerable attention, globally. In this work, we report the isolation and detailed characterization of a highly lytic Pseudomonasphage DRL-P1 isolated from wastewater. Under TEM, DRL-P1 appeared as a member of the phage family Myoviridae. DRL-P1 featured rapid adsorption (~ 5 min), short-latency (~ 30 min), and large burst size (~ 100 PFU per infected cell). DRL-P1 can withstand a wide temperature range (4 °C to 40 °C) and pH (5.0 to 10.0) conditions. The 66,243 bp DRL-P1 genome (MN564818) encodes at least 93 ORFs, of which 36 were functionally annotated based on homology with similar phage proteins available in the databases. Comparative analyses of related genomes suggest an independent evolutionary history and discrete taxonomic position of DRL-P1 within genus Pbunavirus. No toxin or antibiotic resistance genes was identified. DRL-P1 is tolerant to lyophilization and encapsulation techniques and retained lytic activity even after 18 months of storage. We also demonstrated decontaminating potentials of DRL-P1 in vitro, on an artificially contaminated cover-slip model. To the best of our knowledge, this is the first Pbunavirus to be reported from India. Our study suggests DRL-P1 as a potential candidate for various applications.


Assuntos
Myoviridae , Fagos de Pseudomonas , Pseudomonas aeruginosa/virologia , Águas Residuárias , DNA Viral , Farmacorresistência Bacteriana Múltipla/genética , Genoma Viral , Myoviridae/classificação , Myoviridae/isolamento & purificação , Myoviridae/fisiologia , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/isolamento & purificação , Fagos de Pseudomonas/fisiologia , Águas Residuárias/microbiologia , Águas Residuárias/virologia
3.
J Environ Manage ; 283: 111986, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33486195

RESUMO

Constructed wetland (CW) represents an efficient eco-technological conglomerate interweaving water security, energy possibility and environmental protection. In the context of wastewater treatment technologies requiring substantial efficiency at reduced cost, chemical input and low environmental impact, applications of CW is being demonstrated at laboratory and field level with reasonably high contaminant removal efficiency and ecological benefits. However, along with the scope of applications, role of individual wetland component has to be re-emphasized through related research interventions. Hence, this review distinctively explores the concerns for extracting maximum benefit of macrophyte (focusing on interface of pollutant removal, root radial oxygen loss, root iron plaque, endophyte-macrophyte assisted treatment in CW, and prospects of energy harvesting from macrophyte) and role of biofilm (effect on treatment efficiency, composition and factors affecting) in a CW. Another focus of the review is on recent advances and developments in alternative low-cost substrate materials (including conventional type, industrial by-products, organic waste, mineral based and hybrid type) and their effect on target pollutants. The remainder of this review is organized to discuss the concerns of CW with respect to wastewater type (municipal, industrial, agricultural and farm wastewater). Attempt is made to analyze the practical relevance and significance of these aspects incorporating all recent developments in the areas to help making informed decisions about future directions for research and development related to CW.


Assuntos
Águas Residuárias , Purificação da Água , Oxigênio , Tecnologia , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Áreas Alagadas
4.
Resour Conserv Recycl ; 164: 105156, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32921917

RESUMO

Along with outbreak of the pandemic COVID-19 caused by SARS-CoV-2, the problem of biomedical wastewater disposal has caused widespread public concern, as reportedly the presence is confirmed in wastewater. Keeping in mind (i) available evidence indicating need to better understand potential of wastewater mediated transmission and (ii) knowledge gaps in its occurrence, viability, persistence, and inactivation in wastewater, in this present work, we wanted to re-emphasize some strategies for management of SARS-CoV-2 contaminated wastewater to minimise any possible secondary transmission to human and environment. The immediate challenges to consider while considering wastewater management are uncertainty about this new biothreat, relying on prediction based treatments options, significant population being the latent asymptomatic carrier increased risk of passing out of the virus to sewage network, inadequacy of wastewater treatment facility particularly in populated developing countries and increased generation of wastewater due to increased cleanliness concern. In absence of regulated central treatment facility, installation of decentralized wastewater treatment units with single or multiple disinfection barriers in medical units, quarantine centre, isolation wards, testing facilities seems to be urgent for minimizing any potential risk of wastewater transmission. Employing some emerging disinfectants (peracetic acid, performic acid, sodium dichloro isocyanurate, chloramines, chlorine dioxide, benzalconium chloride) shows prospects in terms of virucidal properties. However, there is need of additional research on coronaviruses specific disinfection data generation, regular monitoring of performance considering all factors influencing virus survival, performance evaluation in actual water treatment, need of augmenting disinfection dosages, environmental considerations to select the most appropriate disinfection technology.

5.
Folia Microbiol (Praha) ; 62(1): 17-55, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27718043

RESUMO

Bacteriophages (or phages), the most abundant viral entity of the planet, are omni-present in all the ecosystems. On the basis of their unique characteristics and anti-bacterial property, phages are being freshly evaluated taxonomically. Phages replicate inside the host either by lytic or lysogenic mode after infecting and using the cellular machinery of a bacterium. Since their discovery by Twort and d'Herelle in the early 1900s, phage became an important agent for combating pathogenic bacteria in clinical treatments and its related research gained momentum. However, due to recent emergence of bacterial resistance on antibiotics, applications of phage (phage therapy) become an inevitable option of research. Phage particles become popular as a biotechnological tool and treatment of pathogenic bacteria in a range of applied areas. However, there are few concerns over the application of phage-based solutions. This review deals with the updated phage taxonomy (ICTV 2015 Release and subsequent revision) and phage biology and the recent development of its application in the areas of biotechnology, biosensor, therapeutic medicine, food preservation, aquaculture diseases, pollution remediation, and wastewater treatment and issues related with limitations of phage-based remedy.


Assuntos
Infecções Bacterianas/terapia , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Terapia por Fagos/métodos , Pesquisa Biomédica/tendências , Biotecnologia/métodos , Humanos
6.
Infect Genet Evol ; 40: 352-356, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26656743

RESUMO

Cholera is often caused when drinking water is contaminated through environmental sources. In recent years, the drastic cholera epidemics in Odisha (2007) and Haiti (2010) were associated with natural disasters (flood and Earthquake). Almost every year the state of Assam India witnesses flood in Brahamputra River valley during reversal of wind system (monsoon). This is often followed by outbreak of diarrheal diseases including cholera. Beside the incidence of cholera outbreaks, there is lack of experimental evidence for prevalence of the bacterium in aquatic environment and its association with cholera during/after flood in the state. A molecular surveillance during 2012-14 was carried out to study prevalence, strain differentiation, and clonality of Vibrio cholerae in inland aquatic reservoirs flooded by Brahamputra River in Assam. Water samples were collected, filtered, enriched in alkaline peptone water followed by selective culturing on thiosulfate bile salt sucrose agar. Environmental isolates were identified as V. cholerae, based on biochemical assays followed by sero-grouping and detailed molecular characterization. The incidence of the presence of the bacterium in potable water sources was higher after flood. Except one O1 isolate, all of the strains were broadly grouped under non-O1/non-O139 whereas some of them did have cholera toxin (CT). Surprisingly, we have noticed Haitian ctxB in two non-O1/non-O139 strains. MLST analyses based on pyrH, recA and rpoA genes revealed clonality in the environmental strains. The isolates showed varying degree of antimicrobial resistance including tetracycline and ciprofloxacin. The strains harbored the genetic elements SXT constins and integrons responsible for multidrug resistance. Genetic characterization is useful as phenotypic characters alone have proven to be unsatisfactory for strain discrimination. An assurance to safe drinking water, sanitation and monitoring of the aquatic reservoirs is of utmost importance for combating the impending epidemic threat in the flood affected areas. Further, the management of flood through multi-prong approaches and sustainable utilization of environmental resources would be effective in disease management.


Assuntos
Cólera/epidemiologia , Inundações , Vibrio cholerae/classificação , Vibrio cholerae/genética , Alelos , Sequência de Aminoácidos , Antibacterianos/farmacologia , Cólera/transmissão , Surtos de Doenças , Meio Ambiente , Genes Bacterianos , Humanos , Incidência , Índia/epidemiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem de Sequências Multilocus , Filogenia , Vibrio cholerae/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...