Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 174(6): e13811, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36309822

RESUMO

Photosynthetic algae are the main primary producers in polar regions, form the basis of polar food webs, and are responsible for a significant portion of global carbon fixation. Many cold-water algae are psychrophiles that thrive in the cold but cannot grow at moderate temperatures (≥20°C). Polar regions are at risk of rapid warming caused by climate change, and the sensitivity of psychrophilic algae to rising temperatures makes them, and the ecosystems they inhabit, particularly vulnerable. Recent research on the Antarctic psychrophile Chlamydomonas priscuii, an emerging algal model, has revealed unique adaptations to life in the permanent cold. Additionally, genome sequencing of C. priscuii and its relative Chlamydomonas sp. ICE-L has given rise to a plethora of computational tools that can help elucidate the genetic basis of psychrophily. This minireview summarizes new advances in characterizing the heat stress responses in psychrophilic algae and examines their extraordinary sensitivity to temperature increases. Further research in this field will help determine the impact of climate change on psychrophiles from threatened polar environments.


Assuntos
Chlamydomonas , Microalgas , Temperatura , Microalgas/genética , Ecossistema , Chlamydomonas/genética , Temperatura Baixa , Plantas
2.
Plant Cell Environ ; 45(1): 156-177, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34664276

RESUMO

The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this results from life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10 and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.


Assuntos
Chlamydomonas/fisiologia , Clorófitas/fisiologia , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Regiões Antárticas , Chlamydomonas/crescimento & desenvolvimento , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Chlamydomonas reinhardtii/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/metabolismo , Metaboloma/fisiologia , Família Multigênica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...