Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Rec ; 194(6): e4071, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38488609

RESUMO

Jose Vázquez-Boland, Jorge Val-Calvo and Mariela Scortti present a brief summary of the main aspects surrounding the recently identified multidrug-resistant Rhodococcus equi that emerged in the USA and the actions being taken to tackle the problem with support from the UK's Horserace Betting Levy Board.


Assuntos
Infecções por Actinomycetales , Rhodococcus equi , Animais , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/veterinária
2.
mBio ; 14(5): e0220723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796005

RESUMO

IMPORTANCE: A robust taxonomy is essential for the organized study of prokaryotes and the effective communication of microbial knowledge. The genus rank is the mainstay of biological classification as it brings together under a common name a group of closely related organisms sharing the same recent ancestry and similar characteristics. Despite the unprecedented resolution afforded by whole-genome sequencing in defining evolutionary relationships, a consensus approach for phylogenomics-based prokaryotic genus delineation remains elusive. Taxonomists use different demarcation criteria, sometimes leading to genus rank over-splitting and the creation of multiple new genera. This work reports a simple, reliable, and standardizable method that seeks to minimize subjectivity in genomics-based demarcation of prokaryotic genera, exemplified through application to the order Mycobacteriales. Formal descriptions of proposed taxonomic changes based on our study are included.


Assuntos
Actinomycetales , Filogenia , Genômica/métodos
3.
Nucleic Acids Res ; 51(12): 6073-6086, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37125647

RESUMO

Many prokaryotic operons encode a processive antitermination (P-AT) system. Transcription complexes associated with an antitermination factor can bypass multiple transcription termination signals regardless of their sequences. However, to avoid compromising transcriptional regulation of downstream regions, the terminator at the end of the operon needs to be resistant to antitermination. So far, no studies on the mechanism of resistance to antitermination have been reported. The recently discovered conAn P-AT system is composed of two components that are encoded at the start of many conjugation operons on plasmids of Gram-positive bacteria. Here we report the identification of a conAn-resistant terminator, named TerR, in the conjugation operon of the Bacillus subtilis plasmid pLS20, re-defining the end of the conjugation operon. We investigated the various characteristics of TerR and show that its extraordinary long stem is the determining feature for resistance to antitermination. This is the first P-AT resistance mechanism to be reported.


Assuntos
Células Procarióticas , Regiões Terminadoras Genéticas , Óperon/genética , Plasmídeos/genética , Fatores de Transcrição , Transcrição Gênica , Células Procarióticas/metabolismo
4.
Emerg Infect Dis ; 28(9): 1899-1903, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35997496

RESUMO

A multidrug-resistant clone of the animal and human pathogen Rhodococcus equi, MDR-RE 2287, has been circulating among equine farms in the United States since the 2000s. We report the detection of MDR-RE 2287 outside the United States. Our finding highlights the risk for MDR-RE spreading internationally with horse movements.


Assuntos
Infecções por Actinomycetales , Doenças dos Cavalos , Rhodococcus equi , Infecções por Actinomycetales/tratamento farmacológico , Infecções por Actinomycetales/epidemiologia , Infecções por Actinomycetales/veterinária , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Doenças dos Cavalos/epidemiologia , Cavalos , Humanos , Macrolídeos , Rhodococcus equi/genética , Rifampina , Estados Unidos
5.
Comput Struct Biotechnol J ; 20: 757-765, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198129

RESUMO

Bacterial conjugation is an important route for horizontal gene transfer. The initial step in this process involves a macromolecular protein-DNA complex called the relaxosome, which in plasmids consists of the origin of transfer (oriT) and several proteins that prepare the transfer. The relaxosome protein named relaxase introduces a nick in one of the strands of the oriT to initiate the process. Additional relaxosome proteins can exist. Recently, several relaxosome proteins encoded on the Bacillus subtilis plasmid pLS20 were identified, including the relaxase, named RelpLS20, and two auxiliary DNA-binding factors, named Aux1pLS20 and Aux2pLS20. Here, we extend this characterization in order to define their function. We present the low-resolution SAXS envelope of the Aux1pLS20 and the atomic X-ray structure of the C-terminal domain of Aux2pLS20. We also study the interactions between the auxiliary proteins and the full-length RelpLS20, as well as its separate domains. The results show that the quaternary structure of the auxiliary protein Aux1pLS20 involves a tetramer, as previously determined. The crystal structure of the C-terminal domain of Aux2pLS20 shows that it forms a tetramer and suggests that it is an analog of TraMpF of plasmid F. This is the first evidence of the existence of a TraMpF analog in gram positive conjugative systems, although, unlike other TraMpF analogs, Aux2pLS20 does not interact with the relaxase. Aux1pLS20 interacts with the C-terminal domain, but not the N-terminal domain, of the relaxase RelpLS20. Thus, the pLS20 relaxosome exhibits some unique features despite the apparent similarity to some well-studied G- conjugation systems.

6.
Microorganisms ; 9(12)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34946067

RESUMO

During conjugation, a conjugative DNA element is transferred from a donor to a recipient cell via a connecting channel. Conjugation has clinical relevance because it is the major route for spreading antibiotic resistance and virulence genes. The conjugation process can be divided into different steps. The initial steps carried out in the donor cell culminate in the transfer of a single DNA strand (ssDNA) of the conjugative element into the recipient cell. However, stable settlement of the conjugative element in the new host requires at least two additional events: conversion of the transferred ssDNA into double-stranded DNA and inhibition of the hosts' defence mechanisms to prevent degradation of the transferred DNA. The genes involved in this late step are historically referred to as establishment genes. The defence mechanisms of the host must be inactivated rapidly and-importantly-transiently, because prolonged inactivation would make the cell vulnerable to the attack of other foreign DNA, such as those of phages. Therefore, expression of the establishment genes in the recipient cell has to be rapid but transient. Here, we studied regulation of the establishment genes present on the four clades of the pLS20 family of conjugative plasmids harboured by different Bacillus species. Evidence is presented that two fundamentally different mechanisms regulate the establishment genes present on these plasmids. Identification of the regulatory sequences were critical in revealing the establishment regulons. Remarkably, whereas the conjugation genes involved in the early steps of the conjugation process are conserved and are located in a single large operon, the establishment genes are highly variable and organised in multiple operons. We propose that the mosaical distribution of establishment genes in multiple operons is directly related to the variability of defence genes encoded by the host bacterial chromosomes.

7.
NAR Genom Bioinform ; 3(4): lqab096, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34729475

RESUMO

Conjugation plays important roles in genome plasticity, adaptation and evolution but is also the major horizontal gene-transfer route responsible for spreading toxin, virulence and antibiotic resistance genes. A better understanding of the conjugation process is required for developing drugs and strategies to impede the conjugation-mediated spread of these genes. So far, only a limited number of conjugative elements have been studied. For most of them, it is not known whether they represent a group of conjugative elements, nor about their distribution patterns. Here we show that pLS20 from the Gram-positive bacterium Bacillus subtilis is the prototype conjugative plasmid of a family of at least 35 members that can be divided into four clades, and which are harboured by different Bacillus species found in different global locations and environmental niches. Analyses of their phylogenetic relationship and their conjugation operons have expanded our understanding of a family of conjugative plasmids of Gram-positive origin.

8.
Curr Biol ; 31(22): 5037-5045.e3, 2021 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-34562384

RESUMO

Some Bacillus-infecting bacteriophages use a peptide-based communication system, termed arbitrium, to coordinate the lysis-lysogeny decision. In this system, the phage produces AimP peptide during the lytic cycle. Once internalized by the host cell, AimP binds to the transcription factor AimR, reducing aimX expression and promoting lysogeny. Although these systems are present in a variety of mobile genetic elements, their role in the phage life cycle has only been characterized in phage phi3T during phage infection. Here, using the B. subtilis SPß prophage, we show that the arbitrium system is also required for normal prophage induction. Deletion of the aimP gene increased phage reproduction, although the aimR deletion significantly reduced the number of phage particles produced after prophage induction. Moreover, our results indicated that AimR is involved in a complex network of regulation and brought forward two new players in the SPß lysis-lysogeny decision system, YopN and the phage repressor YopR. Importantly, these proteins are encoded in an operon, the function of which is conserved across all SPß-like phages encoding the arbitrium system. Finally, we obtained mutant phages in the arbitrium system, which behaved almost identically to the wild-type (WT) phage, indicating that the arbitrium system is not essential in the laboratory but is likely beneficial for phage fitness in nature. In support of this, by possessing a functional arbitrium system, the SPß phage can optimize production of infective particles while also preserving the number of cells that survive after prophage induction, a strategy that increases phage persistence in nature.


Assuntos
Fagos Bacilares , Bacteriófagos , Fagos Bacilares/genética , Fagos Bacilares/metabolismo , Bacteriófagos/genética , Lisogenia , Peptídeos/metabolismo , Ativação Viral
9.
Nucleic Acids Res ; 49(10): 5553-5567, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33999173

RESUMO

Transcriptional regulation allows adaptive and coordinated gene expression, and is essential for life. Processive antitermination systems alter the transcription elongation complex to allow the RNA polymerase to read through multiple terminators in an operon. Here, we describe the discovery of a novel bipartite antitermination system that is widespread among conjugative elements from Gram-positive bacteria, which we named conAn. This system is composed of a large RNA element that exerts antitermination, and a protein that functions as a processivity factor. Besides allowing coordinated expression of very long operons, we show that these systems allow differential expression of genes within an operon, and probably contribute to strict regulation of the conjugation genes by minimizing the effects of spurious transcription. Mechanistic features of the conAn system are likely to decisively influence its host range, with important implications for the spread of antibiotic resistance and virulence genes.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Bacteriano/genética , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
10.
mBio ; 12(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727345

RESUMO

Conjugation, the process by which a DNA element is transferred from a donor to a recipient cell, is the main horizontal gene transfer route responsible for the spread of antibiotic resistance and virulence genes. Contact between a donor and a recipient cell is a prerequisite for conjugation, because conjugative DNA is transferred into the recipient via a channel connecting the two cells. Conjugative elements encode proteins dedicated to facilitating the recognition and attachment to recipient cells, also known as mating pair formation. A subgroup of the conjugative elements is able to mediate efficient conjugation during planktonic growth, and mechanisms facilitating mating pair formation will be particularly important in these cases. Conjugative elements of Gram-negative bacteria encode conjugative pili, also known as sex pili, some of which are retractile. Far less is known about mechanisms that promote mating pair formation in Gram-positive bacteria. The conjugative plasmid pLS20 of the Gram-positive bacterium Bacillus subtilis allows efficient conjugation in liquid medium. Here, we report the identification of an adhesin gene in the pLS20 conjugation operon. The N-terminal region of the adhesin contains a class II type thioester domain (TED) that is essential for efficient conjugation, particularly in liquid medium. We show that TED-containing adhesins are widely conserved in Gram-positive bacteria, including pathogens where they often play crucial roles in pathogenesis. Our study is the first to demonstrate the involvement of a class II type TED-containing adhesin in conjugation.IMPORTANCE Bacterial resistance to antibiotics has become a serious health care problem. The spread of antibiotic resistance genes between bacteria of the same or different species is often mediated by a process named conjugation, where a donor cell transfers DNA to a recipient cell through a connecting channel. The first step in conjugation is recognition and attachment of the donor to a recipient cell. Little is known about this first step, particularly in Gram-positive bacteria. Here, we show that the conjugative plasmid pLS20 of Bacillus subtilis encodes an adhesin protein that is essential for effective conjugation. This adhesin protein has a structural organization similar to adhesins produced by other Gram-positive bacteria, including major pathogens, where the adhesins serve in attachment to host tissues during colonization and infection. Our findings may thus also open novel avenues to design drugs that inhibit the spread of antibiotic resistance by blocking the first recipient-attachment step in conjugation.


Assuntos
Adesinas Bacterianas/química , Adesinas Bacterianas/genética , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Conjugação Genética/genética , Bacillus subtilis/patogenicidade , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Transferência Genética Horizontal , Óperon , Plasmídeos/genética
11.
Nucleic Acids Res ; 48(19): 10785-10801, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045732

RESUMO

Quorum sensing plays crucial roles in bacterial communication including in the process of conjugation, which has large economical and health-related impacts by spreading antibiotic resistance. The conjugative Bacillus subtilis plasmid pLS20 uses quorum sensing to determine when to activate the conjugation genes. The main conjugation promoter, Pc, is by default repressed by a regulator RcopLS20 involving DNA looping. A plasmid-encoded signalling peptide, Phr*pLS20, inactivates the anti-repressor of RcopLS20, named RappLS20, which belongs to the large group of RRNPP family of regulatory proteins. Here we show that DNA looping occurs through interactions between two RcopLS20 tetramers, each bound to an operator site. We determined the relative promoter strengths for all the promoters involved in synthesizing the regulatory proteins of the conjugation genes, and constructed an in vivo system uncoupling these regulatory genes to show that RappLS20 is sufficient for activating conjugation in vivo. We also show that RappLS20 actively detaches RcopLS20 from DNA by preferentially acting on the RcopLS20 molecules involved in DNA looping, resulting in sequestration but not inactivation of RcopLS20. Finally, results presented here in combination with our previous results show that activation of conjugation inhibits competence and competence development inhibits conjugation, indicating that both processes are mutually exclusive.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Conjugação Genética , Regulação Bacteriana da Expressão Gênica , Percepção de Quorum , Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas
12.
Front Microbiol ; 10: 1502, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354647

RESUMO

During conjugation a genetic element is transferred from a bacterial donor to a recipient cell via a connecting channel. It is the major route responsible for the spread of antibiotic resistance. Conjugative elements can contain exclusion system(s) that inhibit its transfer to a cell already harboring the element. Our limited knowledge on exclusion systems is mainly based on plasmids of Gram-negative bacteria. Here we studied the conjugative plasmid pLS20 of the Gram-positive Bacillus subtilis. We demonstrate that pLS20 contains an exclusion system and identified the single gene responsible for exclusion, named sespLS20 , which is embedded in the conjugation operon. SespLS20 is the founding member of a novel family of surface exclusion proteins encoded by conjugative elements of Gram-positive origin. We show that the extent of surface exclusion correlates with the level of sespLS20 expression, and that sespLS20 is expressed at basal low-levels in all donor cells but becomes highly expressed in conjugating cells. Accordingly, the transfer of pLS20 from a conjugation-primed donor cell to an un-primed or conjugation-primed donor is inhibited moderately and very efficiently, respectively. The consequences of this differential regulation, which appears to be a conserved feature of surface exclusion systems of Gram-positive and Gram-negative origin, are discussed.

13.
Microbiol Resour Announc ; 8(16)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31000541

RESUMO

Bacillus pumilus spores can cause foodborne poisonings. B. pumilus strain NRS576 forms spores with a very reduced efficiency due to the presence of a plasmid, named p576. Here, we report the genome sequence of strain B. pumilus NRS576 and its plasmid p576.

14.
Nucleic Acids Res ; 46(22): 11910-11926, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30380104

RESUMO

The principal route for dissemination of antibiotic resistance genes is conjugation by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugative elements contain genes that are important for their establishment in the new host, for instance by counteracting the host defense mechanisms acting against incoming foreign DNA. Little is known about these establishment genes and how they are regulated. Here, we deciphered the regulation mechanism of possible establishment genes of plasmid p576 from the Gram-positive bacterium Bacillus pumilus. Unlike the ssDNA promoters described for some conjugative plasmids, the four promoters of these p576 genes are repressed by a repressor protein, which we named Reg576. Reg576 also regulates its own expression. After transfer of the DNA, these genes are de-repressed for a period of time until sufficient Reg576 is synthesized to repress the promoters again. Complementary in vivo and in vitro analyses showed that different operator configurations in the promoter regions of these genes lead to different responses to Reg576. Each operator is bound with extreme cooperativity by two Reg576-dimers. The X-ray structure revealed that Reg576 has a Ribbon-Helix-Helix core and provided important insights into the high cooperativity of DNA recognition.


Assuntos
Bacillus pumilus/genética , Proteínas de Bactérias/química , DNA/química , Transferência Genética Horizontal , Plasmídeos/química , Proteínas Repressoras/química , Bacillus pumilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Conjugação Genética , DNA/genética , DNA/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo
15.
Front Microbiol ; 8: 2138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163424

RESUMO

Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20 , and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL) of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...