Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
J Neurosurg ; : 1-13, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489823

RESUMO

OBJECTIVE: The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticosteroid Randomization After Significant Head Injury (CRASH) prognostic models for mortality and outcome after traumatic brain injury (TBI) were developed using data from 1984 to 2004. This study examined IMPACT and CRASH model performances in a contemporary cohort of US patients. METHODS: The prospective 18-center Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study (enrollment years 2014-2018) enrolled subjects aged ≥ 17 years who presented to level I trauma centers and received head CT within 24 hours of TBI. Data were extracted from the subjects who met the model criteria (for IMPACT, Glasgow Coma Scale [GCS] score 3-12 with 6-month Glasgow Outcome Scale-Extended [GOSE] data [n = 441]; for CRASH, GCS score 3-14 with 2-week mortality data and 6-month GOSE data [n = 831]). Analyses were conducted in the overall cohort and stratified on the basis of TBI severity (severe/moderate/mild TBI defined as GCS score 3-8/9-12/13-14), age (17-64 years or ≥ 65 years), and the 5 top enrolling sites. Unfavorable outcome was defined as GOSE score 1-4. Original IMPACT and CRASH model coefficients were applied, and model performances were assessed by calibration (intercept [< 0 indicated overprediction; > 0 indicated underprediction] and slope) and discrimination (c-statistic). RESULTS: Overall, the IMPACT models overpredicted mortality (intercept -0.79 [95% CI -1.05 to -0.53], slope 1.37 [1.05-1.69]) and acceptably predicted unfavorable outcome (intercept 0.07 [-0.14 to 0.29], slope 1.19 [0.96-1.42]), with good discrimination (c-statistics 0.84 and 0.83, respectively). The CRASH models overpredicted mortality (intercept -1.06 [-1.36 to -0.75], slope 0.96 [0.79-1.14]) and unfavorable outcome (intercept -0.60 [-0.78 to -0.41], slope 1.20 [1.03-1.37]), with good discrimination (c-statistics 0.92 and 0.88, respectively). IMPACT overpredicted mortality and acceptably predicted unfavorable outcome in the severe and moderate TBI subgroups, with good discrimination (c-statistic ≥ 0.81). CRASH overpredicted mortality in the severe and moderate TBI subgroups and acceptably predicted mortality in the mild TBI subgroup, with good discrimination (c-statistic ≥ 0.86); unfavorable outcome was overpredicted in the severe and mild TBI subgroups with adequate discrimination (c-statistic ≥ 0.78), whereas calibration was nonlinear in the moderate TBI subgroup. In subjects ≥ 65 years of age, the models performed variably (IMPACT-mortality, intercept 0.28, slope 0.68, and c-statistic 0.68; CRASH-unfavorable outcome, intercept -0.97, slope 1.32, and c-statistic 0.88; nonlinear calibration for IMPACT-unfavorable outcome and CRASH-mortality). Model performance differences were observed across the top enrolling sites for mortality and unfavorable outcome. CONCLUSIONS: The IMPACT and CRASH models adequately discriminated mortality and unfavorable outcome. Observed overestimations of mortality and unfavorable outcome underscore the need to update prognostic models to incorporate contemporary changes in TBI management and case-mix. Investigations to elucidate the relationships between increased survival, outcome, treatment intensity, and site-specific practices will be relevant to improve models in specific TBI subpopulations (e.g., older adults), which may benefit from the inclusion of blood-based biomarkers, neuroimaging features, and treatment data.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38196125

RESUMO

OBJECTIVE: MRI is increasingly used to evaluate patients with diffuse traumatic brain injury (dTBI). However, the utility of early MRI is understudied. We hypothesize that early MRI patients will have increased length of stay but no changes in ICP management or disposition. METHODS: The 2019 NTDB was queried for patients with dTBI and Glasgow Coma Scale score ≤ 8. Extra-axial and focal intra-axial hemorrhages were excluded. Clinical characteristics were controlled for. Patients with and without MRI were compared for ICP management, outcome, mortality, and disposition. A propensity score matching algorithm was used to create a 1:1 match cohort. RESULTS: In 2568 patients, MRI was less common in severe dTBI patients with clear reasons for poor exam, including bilaterally unreactive pupils or midline shift. After matching, 501 patients who underwent MRI within one week were compared to 501 patients without MRI. MRI patients had longer ICU stays (11.6 ± 9.6 vs. 13.4 ± 9.5, p < 0.01 [-3.03, -0.66 95% CI]). There was no difference between groups in ICP monitor (23.6% vs. 27.3%, p = 0.17 [-0.09, 0.02 95% CI]) or ventriculostomy placement (13.6% vs. 13.2%, p = 0.85 [-0.04, 0.05 95% CI]) or in withdrawal of care (15.0% versus 18.6%, p = 0.12 [-0.08, 0.01 95% CI]). MRI patients were more likely to be discharged to inpatient rehabilitation (42.9% vs. 33.5%, p < 0.01 [0.03, 0.15 95% CI]) but not to home (9.4% versus 9.0 %, p = 0.83 [-0.03, 0.04 95% CI]). CONCLUSIONS: The decision to pursue early brain MRI may be driven by lack of obvious reasons for a patient's poor neurologic status. MRI patients had longer ICU stays but no difference in rates of placement of ICP monitors or ventriculostomies or withdrawal of care. Further study is required to define the role of early MRI in dTBI patients. LEVEL OF EVIDENCE: Prognostic/epidemiological, IV.

3.
JAMA Surg ; 159(3): 248-259, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091011

RESUMO

Importance: Traumatic brain injury (TBI) is associated with persistent functional and cognitive deficits, which may be susceptible to secondary insults. The implications of exposure to surgery and anesthesia after TBI warrant investigation, given that surgery has been associated with neurocognitive disorders. Objective: To examine whether exposure to extracranial (EC) surgery and anesthesia is related to worse functional and cognitive outcomes after TBI. Design, Setting, and Participants: This study was a retrospective, secondary analysis of data from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study, a prospective cohort study that assessed longitudinal outcomes of participants enrolled at 18 level I US trauma centers between February 1, 2014, and August 31, 2018. Participants were 17 years or older, presented within 24 hours of trauma, were admitted to an inpatient unit from the emergency department, had known Glasgow Coma Scale (GCS) and head computed tomography (CT) status, and did not undergo cranial surgery. This analysis was conducted between January 2, 2020, and August 8, 2023. Exposure: Participants who underwent EC surgery during the index admission were compared with participants with no surgery in groups with a peripheral orthopedic injury or a TBI and were classified as having uncomplicated mild TBI (GCS score of 13-15 and negative CT results [CT- mTBI]), complicated mild TBI (GCS score of 13-15 and positive CT results [CT+ mTBI]), or moderate to severe TBI (GCS score of 3-12 [m/sTBI]). Main Outcomes and Measures: The primary outcomes were functional limitations quantified by the Glasgow Outcome Scale-Extended for all injuries (GOSE-ALL) and brain injury (GOSE-TBI) and neurocognitive outcomes at 2 weeks and 6 months after injury. Results: A total of 1835 participants (mean [SD] age, 42.2 [17.8] years; 1279 [70%] male; 299 Black, 1412 White, and 96 other) were analyzed, including 1349 nonsurgical participants and 486 participants undergoing EC surgery. The participants undergoing EC surgery across all TBI severities had significantly worse GOSE-ALL scores at 2 weeks and 6 months compared with their nonsurgical counterparts. At 6 months after injury, m/sTBI and CT+ mTBI participants who underwent EC surgery had significantly worse GOSE-TBI scores (B = -1.11 [95% CI, -1.53 to -0.68] in participants with m/sTBI and -0.39 [95% CI, -0.77 to -0.01] in participants with CT+ mTBI) and performed worse on the Trail Making Test Part B (B = 30.1 [95% CI, 11.9-48.2] in participants with m/sTBI and 26.3 [95% CI, 11.3-41.2] in participants with CT+ mTBI). Conclusions and Relevance: This study found that exposure to EC surgery and anesthesia was associated with adverse functional outcomes and impaired executive function after TBI. This unfavorable association warrants further investigation of the potential mechanisms and clinical implications that could inform decisions regarding the timing of surgical interventions in patients after TBI.


Assuntos
Anestesia , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Masculino , Adulto , Feminino , Estudos Prospectivos , Estudos Retrospectivos
4.
6.
J Clin Med ; 12(5)2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902811

RESUMO

INTRODUCTION: Neuroworsening may be a sign of progressive brain injury and is a factor for treatment of traumatic brain injury (TBI) in intensive care settings. The implications of neuroworsening for clinical management and long-term sequelae of TBI in the emergency department (ED) require characterization. METHODS: Adult TBI subjects from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot Study with ED admission and disposition Glasgow Coma Scale (GCS) scores were extracted. All patients received head computed tomography (CT) scan <24 h post-injury. Neuroworsening was defined as a decline in motor GCS at ED disposition (vs. ED admission). Clinical and CT characteristics, neurosurgical intervention, in-hospital mortality, and 3- and 6-month Glasgow Outcome Scale-Extended (GOS-E) scores were compared by neuroworsening status. Multivariable regressions were performed for neurosurgical intervention and unfavorable outcome (GOS-E ≤ 3). Multivariable odds ratios (mOR) with [95% confidence intervals] were reported. RESULTS: In 481 subjects, 91.1% had ED admission GCS 13-15 and 3.3% had neuroworsening. All neuroworsening subjects were admitted to intensive care unit (vs. non-neuroworsening: 26.2%) and were CT-positive for structural injury (vs. 45.4%). Neuroworsening was associated with subdural (75.0%/22.2%), subarachnoid (81.3%/31.2%), and intraventricular hemorrhage (18.8%/2.2%), contusion (68.8%/20.4%), midline shift (50.0%/2.6%), cisternal compression (56.3%/5.6%), and cerebral edema (68.8%/12.3%; all p < 0.001). Neuroworsening subjects had higher likelihoods of cranial surgery (56.3%/3.5%), intracranial pressure (ICP) monitoring (62.5%/2.6%), in-hospital mortality (37.5%/0.6%), and unfavorable 3- and 6-month outcome (58.3%/4.9%; 53.8%/6.2%; all p < 0.001). On multivariable analysis, neuroworsening predicted surgery (mOR = 4.65 [1.02-21.19]), ICP monitoring (mOR = 15.48 [2.92-81.85], and unfavorable 3- and 6-month outcome (mOR = 5.36 [1.13-25.36]; mOR = 5.68 [1.18-27.35]). CONCLUSIONS: Neuroworsening in the ED is an early indicator of TBI severity, and a predictor of neurosurgical intervention and unfavorable outcome. Clinicians must be vigilant in detecting neuroworsening, as affected patients are at increased risk for poor outcomes and may benefit from immediate therapeutic interventions.

7.
Mil Med ; 187(11-12): 308-310, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-35779046

RESUMO

The Defense Health Board conducted a year-long examination of mental health accession screening and related issues. In its August 2020 report, Examination of Mental Health Accession Screening: Predictive Value of Current Measures and Processes, the Board recommends a paradigm shift in how mental health impacts on readiness are understood and addressed. This shift can only occur with the development and implementation of a research plan that follows cohorts of military personnel from recruitment through their military career. The following article describes this research plan as an excerpt of the larger report.


Assuntos
Militares , Humanos , Militares/psicologia , Saúde Mental , Ocupações , Programas de Rastreamento
8.
Neurosurgery ; 90(3): 278-286, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35113829

RESUMO

BACKGROUND: Traumatic acute subdural hematomas (aSDHs) are common, life-threatening injuries often requiring emergency surgery. OBJECTIVE: To develop and validate the Richmond acute subdural hematoma (RASH) score to stratify patients by risk of mortality after aSDH evacuation. METHODS: The 2016 National Trauma Data Bank (NTDB) was queried to identify adult patients with traumatic aSDHs who underwent craniectomy or craniotomy within 4 h of arrival to an emergency department. Multivariate logistic regression modeling identified risk factors independently associated with mortality. The RASH score was developed based on a factor's strength and level of association with mortality. The model was validated using the 2017 NTDB and the area under the receiver operating characteristic curve (AUC). RESULTS: A total of 2516 cases met study criteria. The patients were 69.3% male with a mean age of 55.7 yr and overall mortality rate of 36.4%. Factors associated with mortality included age between 61 and 79 yr (odds ratio [OR] = 2.3, P < .001), age ≥80 yr (OR = 6.3, P < .001), loss of consciousness (OR = 2.3, P < .001), Glasgow Coma Scale score of ≤8 (OR = 2.6, P < .001), unilateral (OR = 2.8, P < .001) or bilateral (OR = 3.9, P < .001) unresponsive pupils, and midline shift >5 mm (OR = 1.7, P < .001). Using these risk factors, the RASH score predicted progressively increasing mortality ranging from 0% to 94% for scores of 0 to 8, respectively (AUC = 0.72). Application of the RASH score to 3091 cases from 2017 resulted in similar accuracy (AUC = 0.74). CONCLUSION: The RASH score is a simple and validated grading scale that uses easily accessible preoperative factors to predict estimated mortality rates in patients with traumatic aSDHs who undergo surgical evacuation.


Assuntos
Craniotomia , Hematoma Subdural Agudo , Adulto , Idoso , Idoso de 80 Anos ou mais , Craniotomia/efeitos adversos , Craniotomia/mortalidade , Feminino , Hematoma Subdural Agudo/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Medição de Risco/métodos , Fatores de Risco
9.
J Trauma Acute Care Surg ; 92(5): 906-915, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35001020

RESUMO

BACKGROUND: In 2016, the National Academies of Science, Engineering and Medicine called for the development of a National Trauma Research Action Plan. The Department of Defense funded the Coalition for National Trauma Research to generate a comprehensive research agenda spanning the continuum of trauma and burn care. Given the public health burden of injuries to the central nervous system, neurotrauma was one of 11 panels formed to address this recommendation with a gap analysis and generation of high-priority research questions. METHODS: We recruited interdisciplinary experts to identify gaps in the neurotrauma literature, generate research questions, and prioritize those questions using a consensus-driven Delphi survey approach. We conducted four Delphi rounds in which participants generated key research questions and then prioritized the importance of the questions on a 9-point Likert scale. Consensus was defined as 60% or greater of panelists agreeing on the priority category. We then coded research questions using an National Trauma Research Action Plan taxonomy of 118 research concepts, which were consistent across all 11 panels. RESULTS: Twenty-eight neurotrauma experts generated 675 research questions. Of these, 364 (53.9%) reached consensus, and 56 were determined to be high priority (15.4%), 303 were deemed to be medium priority (83.2%), and 5 were low priority (1.4%). The research topics were stratified into three groups-severe traumatic brain injury (TBI), mild TBI (mTBI), and spinal cord injury. The number of high-priority questions for each subtopic was 46 for severe TBI (19.7%), 3 for mTBI (4.3%) and 7 for SCI (11.7%). CONCLUSION: This Delphi gap analysis of neurotrauma research identified 56 high-priority research questions. There are clear areas of focus for severe TBI, mTBI, and spinal cord injury that will help guide investigators in future neurotrauma research. Funding agencies should consider these gaps when they prioritize future research. LEVEL OF EVIDENCE: Diagnostic Test or Criteria, Level IV.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos da Medula Espinal , Lesões Encefálicas Traumáticas/epidemiologia , Lesões Encefálicas Traumáticas/terapia , Consenso , Humanos , Saúde Pública , Projetos de Pesquisa
10.
Artigo em Inglês | MEDLINE | ID: mdl-34046212

RESUMO

INTRODUCTION: Return to work (RTW) is an important milestone of mild traumatic brain injury (mTBI) recovery. The objective of this study was to evaluate whether baseline clinical variables, three-month RTW, and three-month postconcussional symptoms (PCS) were associated with six-month RTW after mTBI. METHODS: Adult subjects from the prospective multicenter Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with mTBI (Glasgow Coma Scale 13-15) who were employed at baseline, with completed three-and six-month RTW status, and three-month Acute Concussion Evaluation (ACE), were extracted. Univariate and multivariable analyses were performed for six-month RTW, with focus on baseline employment, three-month RTW, and three-month ACE domains (physical, cognitive, sleep, and/or emotional postconcussional symptoms (PCS)). Odds ratios (OR) and 95% confidence intervals [CI] were reported. Significance was assessed at p < 0.05. RESULTS: In 152 patients aged 40.7 ± 15.0years, 72% were employed full-time at baseline. Three- and six-month RTW were 77.6% and 78.9%, respectively. At three months, 59.2%, 47.4%, 46.1% and 31.6% scored positive for ACE physical, cognitive, sleep, and emotional PCS domains, respectively. Three-month RTW predicted six-month RTW (OR = 19.80, 95% CI [7.61-51.52]). On univariate analysis, scoring positive in any three-month ACE domain predicted inability for six-month RTW (OR = 0.10-0.11). On multivariable analysis, emotional symptoms predicted inability to six-month RTW (OR = 0.19 [0.04-0.85]). Subjects who scored positive in all four ACE domains were more likely to be unable to RTW at six months (4 domains: 58.3%, vs. 0-to-3 domains: 9.5%; multivariable OR = 0.09 [0.02-0.33]). CONCLUSIONS: Three-month post-injury is an important time point at which RTW status and PCS should be assessed, as both are prognostic markers for six-month RTW. Clinicians should be particularly vigilant of patients who present with emotional symptoms, and patients with symptoms across multiple PCS categories, as these patients are at further risk of inability to RTW and may benefit from targeted evaluation and support.

11.
J Neurosurg ; 135(4): 1280-1283, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34049272
12.
Clin J Sport Med ; 31(1): e1-e7, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30358617

RESUMO

OBJECTIVE: To understand catchers' preferences for mask type and perceptions regarding safety, comfort, and fit, and determine whether mask type is correlated with self-reported concussion and related symptoms after impacts from foul tips or backswings. DESIGN: Cross-sectional study. SETTING: Survey of active baseball catchers. PARTICIPANTS: Professional baseball catchers. INTERVENTION: From May 1, 2015, to June 30, 2015, an online survey was administered in English and Spanish to all Major and Minor League catchers (n = 836). MAIN OUTCOME MEASURES: Survey items addressed the type of mask routinely and previously used (conventional or hockey style); brand and material (steel or titanium); perceptions regarding safety, comfort, and fit; and experiences with concussions. RESULTS: The sample consisted of 596 catchers of which 26% reported being diagnosed with a concussion. Some concussions occurred from non-baseball activities, such as car accidents or off the field incidents. For those that occurred playing baseball, 35% resulted from a foul tip. Once catchers entered professional baseball, the use of a conventional mask rose significantly: 71% of catchers reported wearing conventional-style masks, and 30% hockey-style masks at the time the survey was conducted (P < 0.05). Both conventional and hockey-style mask wearers significantly selected hockey-style masks as providing better overall safety and protection than conventional masks (P < 0.05). CONCLUSIONS: This research supports foul tips as an important cause of concussion in catchers and provides important information about preferences among catchers for masks that are not perceived as the safest and strongest. Future research should supplement these data by conducting laboratory testing to determine which masks are stronger and by collecting qualitative data to explore why some players are more likely to wear a mask type that they perceive as offering less safety or protection.


Assuntos
Traumatismos em Atletas/prevenção & controle , Beisebol/lesões , Concussão Encefálica/prevenção & controle , Equipamento de Proteção Individual , Adolescente , Adulto , Estudos Transversais , Humanos , Equipamento de Proteção Individual/classificação , Equipamentos Esportivos , Adulto Jovem
13.
J Neurotrauma ; 38(1): 1-43, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115334

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.


Assuntos
Lesões Encefálicas/sangue , Lesões Encefálicas/diagnóstico , Encéfalo/metabolismo , COVID-19/sangue , COVID-19/diagnóstico , Biomarcadores/sangue , Encéfalo/patologia , Lesões Encefálicas/etiologia , COVID-19/complicações , Humanos , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/etiologia , Estudos Prospectivos , Estudos Retrospectivos
14.
J Neurosurg ; : 1-7, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33065539

RESUMO

The American Board of Neurological Surgery (ABNS) was incorporated in 1940 in recognition of the need for detailed training in and special qualifications for the practice of neurological surgery and for self-regulation of quality and safety in the field. The ABNS believes it is the duty of neurosurgeons to place a patient's welfare and rights above all other considerations and to provide care with compassion, respect for human dignity, honesty, and integrity. At its inception, the ABNS was the 13th member board of the American Board of Medical Specialties (ABMS), which itself was founded in 1933. Today, the ABNS is one of the 24 member boards of the ABMS.To better serve public health and safety in a rapidly changing healthcare environment, the ABNS continues to evolve in order to elevate standards for the practice of neurological surgery. In connection with its activities, including initial certification, recognition of focused practice, and continuous certification, the ABNS actively seeks and incorporates input from the public and the physicians it serves. The ABNS board certification processes are designed to evaluate both real-life subspecialty neurosurgical practice and overall neurosurgical knowledge, since most neurosurgeons provide call coverage for hospitals and thus must be competent to care for the full spectrum of neurosurgery.The purpose of this report is to describe the history, current state, and anticipated future direction of ABNS certification in the US.

15.
Neurosurgery ; 87(2): 418-425, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32232354

RESUMO

The Berlin statement on sport-related concussion was published in 2017 using evidence-based recommendations. We aimed to examine (1) the implementation of, distribution and education based on the Berlin recommendations, and the development of sport-specific protocols/guidelines among professional and elite sports, (2) the implementation of guidelines at the community level, (3) translation of guidelines into different languages, and (4) research activities. Senior medical advisers and chief medical officers from Australian Football League, All Japan Judo Federation, British Horseracing Authority, Cricket Australia, Fédération Equestre Internationale, Football Association, Gaelic Athletic Association, International Boxing Association, Irish Horseracing Regulatory Board, Major League Baseball, National Football League, National Hockey League, National Rugby League, and World Rugby completed a questionnaire. The results demonstrated that all 14 sporting organizations have published concussion protocols/guidelines based on the Berlin recommendations, including Recognize, Removal from play, Re-evaluation, Rest, Recovery, and Return to play. There is variable inclusion of Prolonged symptoms. Prevention and Risk reduction and Long-term effects are addressed in the guidelines, rules and regulations, and/or sport-specific research. There is variability in education programs, monitoring compliance with guidelines, and publication in other languages. All sporting bodies are actively involved in concussion research. We conclude that the Berlin recommendations have been included in concussion protocols/guidelines by all the sporting bodies, with consistency in the essential components of the recommendations, whilst also allowing for sport- and regional-specific variations. Education at the elite, community, and junior levels remains an ongoing challenge, and future iterations of guidelines may consider multiple language versions, and community- and junior-level guidelines.


Assuntos
Traumatismos em Atletas , Concussão Encefálica , Guias como Assunto , Medicina Esportiva/normas , Traumatismos em Atletas/diagnóstico , Concussão Encefálica/diagnóstico , Humanos
16.
J Clin Neurosci ; 75: 149-156, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32173156

RESUMO

Substance use is commonly associated with traumatic brain injury (TBI). We investigate associations between active substance use, peri-injury factors, and outcome after TBI across three U.S. Level I trauma centers. TBI subjects from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) with Marshall computed tomography (CT) score 1-3, no neurosurgical procedure/operation, and admission urine toxicology screen (tox+/-) were extracted. Associations between tox+/-, comorbidities, hospital variables, and six-month functional (GOSE) and neuropsychiatric (PCL-C, BSI18, RPQ-13, SWLS) outcomes were analyzed. Multivariable regression was performed for associations significant on univariate analysis with odds ratios (mOR) presented. Significance assessed at p < 0.05. In 133 subjects, tox+/tox- were 29.1%/72.9%. Tox+ was younger (35.5/43.6-years, p = 0.018), trended toward male sex (80.6%/63.9%, p = 0.067), was associated with history of seizures (27.8%/10.3%, p = 0.012), self-reported substance use (44.4%/17.5%, p = 0.001), prior TBI (58.8%/34.1%, p = 0.009), GCS < 15 (69.4%/48.4%, p = 0.031) and blood alcohol level >0.08-mg/dl (55.6%/30.8%, p = 0.022). In CT-negative subjects, tox+ was associated with increased hospital admission (95.7%/66.7%, p = 0.034). At six-months, tox+ was associated with screening positive for post-traumatic stress disorder (PCL-C: 40.0%/15.9%; mOR = 8.24, p = 0.022) and psychiatric symptoms (BSI18: 40.0%/14.3%, mOR = 11.06, p = 0.023). Active substance use in TBI may confound GCS assessment, triage to higher level of care, and be associated with increased six-month neuropsychiatric symptoms. Substance use screening should be integrated into standard emergency/acute care TBI protocols to optimize management and resource utilization. Clinicians should be vigilant in providing education, counselling, and follow-up for TBI patients with substance use.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Programas de Rastreamento/métodos , Transtornos Relacionados ao Uso de Substâncias/complicações , Toxicologia/métodos , Adulto , Fatores Etários , Concentração Alcoólica no Sangue , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Serviço Hospitalar de Emergência , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fatores Sexuais , Tomografia Computadorizada por Raios X , Centros de Traumatologia , Resultado do Tratamento
17.
Neurotrauma Rep ; 1(1): 32-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223528

RESUMO

Polytrauma and traumatic brain injury (TBI) frequently co-occur and outcomes are routinely measured by the Glasgow Outcome Scale-Extended (GOSE). Polytrauma may confound GOSE measurement of TBI-specific outcomes. Adult patients with TBI from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study had presented to a Level 1 trauma center after injury, received head computed tomography (CT) within 24 h, and completed the GOSE at 3 months and 6 months post-injury. Polytrauma was defined as an Abbreviated Injury Score (AIS) ≥3 in any extracranial region. Univariate regressions were performed using known GOSE clinical cutoffs. Multi-variable regressions were performed for the 3- and 6-month GOSE, controlling for known demographic and injury predictors. Of 361 subjects (age 44.9 ± 18.9 years, 69.8% male), 69 (19.1%) suffered polytrauma. By Glasgow Coma Scale (GCS) assessment, 80.1% had mild, 5.8% moderate, and 14.1% severe TBI. On univariate logistic regression, polytrauma was associated with increased odds of moderate disability or worse (GOSE ≤6; 3 month odds ratio [OR] = 2.57 [95% confidence interval (CI): 1.50-4.41; 6 month OR = 1.70 [95% CI: 1.01-2.88]) and death/severe disability (GOSE ≤4; 3 month OR = 3.80 [95% CI: 2.03-7.11]; 6 month OR = 3.33 [95% CI: 1.71-6.46]). Compared with patients with isolated TBI, more polytrauma patients experienced a decline in GOSE from 3 to 6 months (37.7 vs. 24.7%), and fewer improved (11.6 vs. 22.6%). Polytrauma was associated with greater univariate ordinal odds for poorer GOSE (3 month OR = 2.79 [95% CI: 1.73-4.49]; 6 month OR = 1.73 [95% CI: 1.07-2.79]), which was conserved on multi-variable ordinal regression (3 month OR = 3.05 [95% CI: 1.76-5.26]; 6 month OR = 2.04 [95% CI: 1.18-3.42]). Patients with TBI with polytrauma are at greater risk for 3- and 6-month disability compared with those with isolated TBI. Methodological improvements in assessing TBI-specific disability, versus disability attributable to all systemic injuries, will generate better TBI outcomes assessment tools.

18.
J Neurotrauma ; 37(22): 2401-2413, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30595079

RESUMO

Traumatic brain injury (TBI) is often associated with long-term disability and chronic neurological sequelae. One common contributor to unfavorable outcomes is secondary brain injury, which is potentially treatable and preventable through appropriate management of patients in the neurosurgical intensive care unit. Intracranial pressure (ICP) is currently the predominant neurological-specific physiological parameter used to direct the care of severe TBI (sTBI) patients. However, recent clinical evidence has called into question the association of ICP monitoring with improved clinical outcome. The detailed cellular and molecular derangements associated with intracranial hypertension (IC-HTN) and their relationship to injury phenotype and neurological outcomes are not completely understood. Various animal models of TBI have been developed, but the clinical applicability of ICP monitoring in the pre-clinical setting has not been well-characterized. Linking basic mechanistic studies in translational TBI models with investigation of ICP monitoring that more faithfully replicates the clinical setting will provide clinical investigators with a more informed understanding of the pathophysiology of IC-HTN, thus facilitating development of improved therapies for sTBI patients.


Assuntos
Lesões Encefálicas Traumáticas , Pressão Intracraniana , Monitorização Neurofisiológica , Pesquisa Translacional Biomédica , Animais , Modelos Animais de Doenças , Humanos
19.
J Neurosurg ; : 1-7, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31675697

RESUMO

The Department of Neurosurgery at the Medical College of Virginia/Virginia Commonwealth University (VCU) celebrates its 100th anniversary in 2019. It was founded by C. C. Coleman, who directed the US Army School of Brain Surgery during World War I and was one of the original members of the Society of Neurological Surgeons. Coleman began a residency program that was among the first four such programs in the United States and that produced such prominent graduates as Frank Mayfield, Gayle Crutchfield, and John Meredith. Neurosurgery at VCU later became a division under the medical school's surgery department. Division chairs included William Collins and Donald Becker. It was during the Becker years that VCU became a leading National Institutes of Health-funded neurotrauma research center. Harold Young oversaw the transition from division to department and expanded the practice base of the program. In 2015, Alex Valadka assumed leadership and established international collaborations for research and education. In its first 100 years, VCU Neurosurgery has distinguished itself as an innovator in clinical research and an incubator of compassionate and service-oriented physicians.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...