Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 115988, 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38159685

RESUMO

The histamine H3 receptor (H3R) is a neurotransmitter receptor that is primarily found in the brain, where it controls the release and synthesis of histamine, as well as the release of other neurotransmitters (e.g. dopamine, serotonin). Notably, 20 H3R isoforms are differentially expressed in the human brain as a consequence of alternative gene splicing. The hH3R-445, -415, -365 and -329 isoforms contain the prototypical GPCR (7TM) structure, yet exhibit deletions in the third intracellular loop, a structural domain that is pivotal for G protein-coupling, signaling and regulation. To date, the physiological relevance underlying the individual and combinatorial function of hH3R isoforms remains poorly understood. Nevertheless, given their significant implication in physiological processes (e.g. cognition, homeostasis) and neurological disorders (e.g. Alzheimer's and Parkinson's disease, schizophrenia), widespread targeting of hH3R isoforms by drugs may lead to on-target side effects in brain regions that are unaffected by disease. To this end, isoform- and/or pathway-selective targeting of hH3R isoforms by biased agonists could be of therapeutic relevance for the development of region- and disease-specific drugs. Hence, we have evaluated ligand biased signaling at the hH3R-445, -415, -365 and -329 isoforms across various Gαi/o-mediated (i.e. [35S]GTPγS accumulation, cAMP inhibition, pERK1/2 activation, pAKT T308/S473 activation) and non Gαi/o-mediated (i.e. ß-arrestin2 recruitment) endpoints that are relevant to neurological diseases. Our findings indicate that H3R agonists display significantly altered patterns in their degree of ligand bias, in a pathway- and isoform-dependent manner, underlining the significance to investigate GPCRs with multiple isoforms to improve development of selective drugs. SUBJECT CATEGORY: Neuropharmacology.

2.
Nat Commun ; 14(1): 5440, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37673901

RESUMO

The M4 muscarinic acetylcholine receptor (M4 mAChR) has emerged as a drug target of high therapeutic interest due to its expression in regions of the brain involved in the regulation of psychosis, cognition, and addiction. The mAChR agonist, xanomeline, has provided significant improvement in the Positive and Negative Symptom Scale (PANSS) scores in a Phase II clinical trial for the treatment of patients suffering from schizophrenia. Here we report the active state cryo-EM structure of xanomeline bound to the human M4 mAChR in complex with the heterotrimeric Gi1 transducer protein. Unexpectedly, two molecules of xanomeline were found to concomitantly bind to the monomeric M4 mAChR, with one molecule bound in the orthosteric (acetylcholine-binding) site and a second molecule in an extracellular vestibular allosteric site. Molecular dynamic simulations supports the structural findings, and pharmacological validation confirmed that xanomeline acts as a dual orthosteric and allosteric ligand at the human M4 mAChR. These findings provide a basis for further understanding xanomeline's complex pharmacology and highlight the myriad of ways through which clinically relevant ligands can bind to and regulate GPCRs.


Assuntos
Comportamento Aditivo , Humanos , Sítio Alostérico , Encéfalo , Cognição
3.
Eur J Med Chem ; 258: 115588, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37423123

RESUMO

Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and ß-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.


Assuntos
Acetilcolina , Receptores Muscarínicos , Camundongos , Animais , Cricetinae , Regulação Alostérica , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Piridinas/farmacologia , Piridinas/química , Transdução de Sinais , Células CHO
4.
Mol Pharmacol ; 104(3): 92-104, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348914

RESUMO

The development of subtype selective small molecule drugs for the muscarinic acetylcholine receptor (mAChR) family has been challenging. The design of more selective ligands can be improved by understanding the structure and function of key amino acid residues that line ligand binding sites. Here we study the role of three conserved key tyrosine residues [Y1043.33, Y4036.51, and Y4267.39 (Ballesteros and Weinstein numbers in superscript)] at the human M2 mAChR, located at the interface between the orthosteric and allosteric binding sites of the receptor. We specifically focused on the role of the three tyrosine hydroxyl groups in the transition between the inactive and active conformations of the receptor by making phenylalanine point mutants. Single-point mutation at either of the three positions was sufficient to reduce the affinity of agonists by ∼100-fold for the M2 mAChR, whereas the affinity of antagonists remained largely unaffected. In contrast, neither of the mutations affected the efficacy of orthosteric agonists. When mutations were combined into double and triple M2 mAChR mutants, the affinity of antagonists was reduced by more than 100-fold compared with the wild-type M2 receptor. In contrast, the affinity of allosteric modulators, either negative or positive, was retained at all single and multiple mutations, but the degree of allosteric effect exerted on the endogenous ligand acetylcholine was affected at all mutants containing Y4267.39F. These findings will provide insights to consider when designing future mAChR ligands. SIGNIFICANCE STATEMENT: Structural studies demonstrated that three tyrosine residues between the orthosteric and allosteric sites of the M2 muscarinic acetylcholine receptor (mAChR) had different hydrogen bonding networks in the inactive and active conformations. The role of hydroxyl groups of the tyrosine residues on orthosteric and allosteric ligand pharmacology was unknown. We found that hydroxyl groups of the tyrosine residues differentially affected the molecular pharmacology of orthosteric and allosteric ligands. These results provide insights to consider when designing future mAChR ligands.


Assuntos
Agonistas Muscarínicos , Tirosina , Humanos , Ligantes , Agonistas Muscarínicos/farmacologia , Receptores Muscarínicos , Sítio Alostérico , Regulação Alostérica/fisiologia , Receptor Muscarínico M1 , Receptor Muscarínico M2/genética , Receptor Muscarínico M2/metabolismo
5.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37248726

RESUMO

Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.


Assuntos
Receptor Muscarínico M4 , Receptores Muscarínicos , Humanos , Acetilcolina/metabolismo , Regulação Alostérica , Sítio Alostérico , Microscopia Crioeletrônica , Ligantes , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo
7.
Nat Chem Biol ; 19(7): 805-814, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36782010

RESUMO

A drug's selectivity for target receptors is essential to its therapeutic utility, but achieving selectivity between similar receptors is challenging. The serendipitous discovery of ligands that stimulate target receptors more strongly than closely related receptors, despite binding with similar affinities, suggests a solution. The molecular mechanism of such 'efficacy-driven selectivity' has remained unclear, however, hindering design of such ligands. Here, using atomic-level simulations, we reveal the structural basis for the efficacy-driven selectivity of a long-studied clinical drug candidate, xanomeline, between closely related muscarinic acetylcholine receptors (mAChRs). Xanomeline's binding mode is similar across mAChRs in their inactive states but differs between mAChRs in their active states, with divergent effects on active-state stability. We validate this mechanism experimentally and use it to design ligands with altered efficacy-driven selectivity. Our results suggest strategies for the rational design of ligands that achieve efficacy-driven selectivity for many pharmaceutically important G-protein-coupled receptors.


Assuntos
Receptores Muscarínicos , Tiadiazóis , Ligantes , Receptores Muscarínicos/química , Receptores Muscarínicos/metabolismo , Piridinas , Tiadiazóis/química , Receptores Acoplados a Proteínas G/química
8.
Acta Pharm Sin B ; 13(1): 213-226, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815036

RESUMO

There is an accumulating body of evidence implicating the muscarinic acetylcholine receptor 4 (M4) in schizophrenia and dementia with Lewy bodies, however, a clinically validated M4 positron emission tomography (PET) radioligand is currently lacking. As such, the aim of this study was to develop a suitable M4 PET ligand that allows the non-invasive visualization of M4 in the brain. Structure-activity relationship studies of pyrazol-4-yl-pyridine derivates led to the discovery of target compound 12 - a subtype-selective positive allosteric modulator (PAM). The radiofluorinated analogue, [18F]12, was synthesized in 28 ± 10% radiochemical yield, >37 GBq/µmol and an excellent radiochemical purity >99%. Initial in vitro autoradiograms on rodent brain sections were performed in the absence of carbachol and showed moderate specificity as well as a low selectivity of [18F]12 for the M4-rich striatum. However, in the presence of carbachol, a significant increase in tracer binding was observed in the rat striatum, which was reduced by >60% under blocking conditions, thus indicating that orthosteric ligand interaction is required for efficient binding of [18F]12 to the allosteric site. Remarkably, however, the presence of carbachol was not required for high specific binding in the non-human primate (NHP) and human striatum, and did not further improve the specificity and selectivity of [18F]12 in higher species. These results pointed towards significant species-differences and paved the way for a preliminary PET study in NHP, where peak brain uptake of [18F]12 was found in the putamen and temporal cortex. In conclusion, we report on the identification and preclinical development of the first radiofluorinated M4 PET radioligand with promising attributes. The availability of a clinically validated M4 PET radioligand harbors potential to facilitate drug development and provide a useful diagnostic tool for non-invasive imaging.

9.
Br J Pharmacol ; 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36565295

RESUMO

Gastrointestinal motility is tightly regulated by the enteric nervous system (ENS). Disruption of coordinated enteric nervous system activity can result in dysmotility. Pharmacological treatment options for dysmotility include targeting of G protein-coupled receptors (GPCRs) expressed by neurons of the enteric nervous system. Current GPCR-targeting drugs for motility disorders bind to the highly conserved endogenous ligand-binding site and promote indiscriminate activation or inhibition of the target receptor throughout the body. This can be associated with significant side-effect liability and a loss of physiological tone. Allosteric modulators of GPCRs bind to a distinct site from the endogenous ligand, which is typically less conserved across multiple receptor subtypes and can modulate endogenous ligand signalling. Allosteric modulation of GPCRs that are important for enteric nervous system function may provide effective relief from motility disorders while limiting side-effects. This review will focus on how allosteric modulators of GPCRs may influence gastrointestinal motility, using 5-hydroxytryptamine (5-HT), acetylcholine (ACh) and opioid receptors as examples.

10.
Br J Pharmacol ; 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550621

RESUMO

BACKGROUND AND PURPOSE: Affinity-based, selective orthosteric ligands for the muscarinic acetylcholine receptors (mAChRs) are difficult to develop due to high sequence homology across the five subtypes. Selectivity can also be achieved via the selective activation of a particular subtype or signalling pathway. Promisingly, a prior study identified compounds 6A and 7A as functionally selective and Gi biased compounds at the M2 mAChR. Here, we have investigated the activation of individual G protein subfamilies and the downstream signalling profiles of 6A and 7A at the M2 mAChR. EXPERIMENTAL APPROACH: G protein activation was measured with the TRUPATH assay in M2 mAChR FlpIn CHO cells. Activity in downstream signalling pathways was determined using the cAMP CAMYEL BRET sensor and assay of ERK 1/2 phosphorylation. KEY RESULTS: M2 mAChRs coupled to Gɑi1 , GɑoA and Gɑs , but not Gɑq , in response to canonical orthosteric agonists. Compounds 6A and 7A did not elicit any G protein activation, cAMP inhibition or stimulation, or ERK 1/2 phosphorylation. Instead, a Schild analysis indicates a competitive, antagonistic interaction of compounds 6A and 7A with ACh in the Gɑi1 activation assay. Overexpression of the M2 mAChR may suggest an expression-dependent activation profile of compounds 6A and 7A. CONCLUSIONS AND IMPLICATIONS: These data confirm that the M2 mAChR preferentially couples to Gɑi/o and to a lesser extent to Gɑs in response to canonical orthosteric ligands. However, this study was not able to detect Gɑi bias of compounds 6A and 7A, highlighting the importance of cellular background when classifying new ligands.

11.
Br J Pharmacol ; 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355830

RESUMO

Targeting allosteric sites of M1 muscarinic acetylcholine receptors (M1 receptors) is a promising strategy to treat neurocognitive disorders, such as Alzheimer's disease and schizophrenia. Indeed, the last two decades have seen an impressive body of work focussing on the design and development of positive allosteric modulators (PAMs) for the M1 receptor. This has led to the identification of a structurally diverse range of highly selective M1 PAMs. In preclinical models, M1 PAMs have shown rescue of cognitive deficits and improvement of endpoints predictive of symptom domains of schizophrenia. Yet, to date only a few M1 PAMs have reached early-stage clinical trials, with many of them failing to progress further due to on-target mediated cholinergic adverse effects that have plagued the development of this class of ligand. This review covers the recent preclinical and clinical studies in the field of M1 receptor drug discovery for the treatment of Alzheimer's disease and schizophrenia, with a specific focus on M1 PAM, highlighting both the undoubted potential but also key challenges for the successful translation of M1 PAMs from bench-side to bedside.

12.
J Med Chem ; 65(18): 12367-12385, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36099150

RESUMO

Chronic pain and depression are both widely prevalent comorbid medical conditions. While efficient, µ-opioid receptor-based medications are associated with life-threatening side effects, including respiratory depression, dependence, and addiction. The δ-opioid receptor is a promising alternative biological target for chronic pain and depression due to its significantly reduced on-target side effects compared to the µ-opioid receptor. A previous study identified two δ-opioid receptor positive allosteric modulators. Herein, we report the design of five series of compounds targeting previously unexplored regions of the originally described SAR. Analogs were assessed for their ability to potentiate the agonist response of Leu-enkephalin. Of the 30 analogs, compound 6g displayed trends toward enhancing the ERK1/2 phosphorylation signaling compared to cAMP inhibition, while compound 11c exhibited a trend in shifting the signaling bias toward cAMP inhibition. Both 6g and 11c emerged as promising tool compounds toward the design of prospective therapeutics requiring specific downstream signaling attributes.


Assuntos
Dor Crônica , Depressão , Receptores Opioides delta , Antidepressivos/química , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Dor Crônica/tratamento farmacológico , Depressão/tratamento farmacológico , Encefalina Leucina/farmacologia , Humanos , Receptores Opioides mu/agonistas , Xantenos/síntese química , Xantenos/farmacologia
13.
ACS Chem Neurosci ; 13(8): 1206-1218, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380782

RESUMO

Many Food and Drug Administration (FDA)-approved drugs are structural analogues of the endogenous (natural) ligands of G protein-coupled receptors (GPCRs). However, it is becoming appreciated that chemically distinct ligands can bind to GPCRs in conformations that lead to different cellular signaling events, a phenomenon termed biased agonism. Despite this, the rigorous experimentation and analysis required to identify biased agonism are often not undertaken in most clinical candidates and go unrealized. Recently, xanomeline, a muscarinic acetylcholine receptor (mAChR) agonist, has entered phase III clinical trials for the treatment of schizophrenia. If successful, xanomeline will be the first novel FDA-approved antipsychotic drug in almost 50 years. Intriguingly, xanomeline's potential for biased agonism at the mAChRs and, in particular, the M4 mAChR, the most promising receptor target for schizophrenia, has not been assessed. Here, we quantify the biased agonism profile of xanomeline and three other mAChR agonists in Chinese hamster ovary cells recombinantly expressing the M4 mAChR. Agonist activity was examined across nine distinct signaling readouts, including the activation of five different G protein subtypes, ERK1/2 phosphorylation, ß-arrestin recruitment, calcium mobilization, and cAMP regulation. Relative to acetylcholine (ACh), xanomeline was biased away from ERK1/2 phosphorylation and calcium mobilization compared to Gαi2 protein activation. These findings likely have important implications for our understanding of the therapeutic action of xanomeline and call for further investigation into the in vivo consequences of biased agonism in drugs targeting the M4 mAChR for the treatment of schizophrenia.


Assuntos
Cálcio , Tiadiazóis , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ligantes , Agonistas Muscarínicos/farmacologia , Agonistas Muscarínicos/uso terapêutico , Piridinas , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Receptores Acoplados a Proteínas G , Receptores Muscarínicos , Tiadiazóis/química
14.
Am J Physiol Gastrointest Liver Physiol ; 322(1): G66-G78, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34755545

RESUMO

Allosteric modulators (AMs) are molecules that can fine-tune signaling by G protein-coupled receptors (GPCRs). Although they are a promising therapeutic approach for treating a range of disorders, allosteric modulation of GPCRs in the context of the enteric nervous system (ENS) and digestive dysfunction remains largely unexplored. This study examined allosteric modulation of the delta opioid receptor (DOR) in the ENS and assessed the suitability of DOR AMs for the treatment of irritable bowel syndrome (IBS) symptoms using mouse models. The effects of the positive allosteric modulator (PAM) of DOR, BMS-986187, on neurogenic contractions of the mouse colon and on DOR internalization in enteric neurons were quantified. The ability of BMS-986187 to influence colonic motility was assessed both in vitro and in vivo. BMS-986187 displayed DOR-selective PAM-agonist activity and orthosteric agonist probe dependence in the mouse colon. BMS-986187 augmented the inhibitory effects of DOR agonists on neurogenic contractions and enhanced reflex-evoked DOR internalization in myenteric neurons. BMS-986187 significantly increased DOR endocytosis in myenteric neurons in response to the weakly internalizing agonist ARM390. BMS-986187 reduced the generation of complex motor patterns in the isolated intact colon. BMS-986187 reduced fecal output and diarrhea onset in the novel environment stress and castor oil models of IBS symptoms, respectively. DOR PAMs enhance DOR-mediated signaling in the ENS and have potential benefit for the treatment of dysmotility. This study provides proof of concept to support the use of GPCR AMs for the treatment of gastrointestinal motility disorders.NEW & NOTEWORTHY This study assesses the use of positive allosteric modulation as a pharmacological approach to enhance opioid receptor signaling in the enteric nervous system. We demonstrate that selective modulation of endogenous delta opioid receptor signaling can suppress colonic motility without causing constipation. We propose that allosteric modulation of opioid receptor signaling may be a therapeutic strategy to normalize gastrointestinal motility in conditions such as irritable bowel syndrome.


Assuntos
Sistema Nervoso Entérico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Receptores Opioides delta/efeitos dos fármacos , Xantonas/farmacologia , Analgésicos Opioides/farmacologia , Benzamidas/farmacologia , Colo/efeitos dos fármacos , Sistema Nervoso Entérico/fisiopatologia , Motilidade Gastrointestinal/fisiologia , Humanos , Receptores Opioides/efeitos dos fármacos , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas , Receptores Opioides mu/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
15.
ACS Chem Neurosci ; 13(1): 97-111, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34905693

RESUMO

Selective agonists for the human M1 and M4 muscarinic acetylcholine receptors (mAChRs) are attractive candidates for the treatment of cognitive disorders, such as Alzheimer's disease and schizophrenia. Past efforts to optimize a ligand for selective agonism at any one of the M1-M5 mAChR subtypes has proven to be a significant challenge. Recently, research efforts have demonstrated that hybrid ligands may offer a potential solution to the lack of selectivity at mAChRs. In an attempt to design M1 mAChR selective agonists by hybridizing an M1 mAChR selective positive allosteric modulator [1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid] and a potent agonist [(4-[(4,5-dihydro-3-isoxazolyl)oxy]-N,N,N-trimethyl-2-butyn-1-aminium iodide) (iperoxo)], we unexpectedly discovered that these ligands possessed noticeable M2/M4 mAChR selectivity. Evaluation of truncated derivatives of the hybrid ligands at the M1-M5 mAChR subtypes suggests that the allosteric pharmacophore of iperoxo-based mAChR hybrid ligands likely sterically disrupts the allosteric site of the mAChRs, attenuating the efficacy of M1/M3/M5 mAChR responses compared to M2/M4 mAChRs, resulting in a preference for the M2/M4 mAChRs. However, at certain intermediate linker lengths, the effects of this apparent disruption of the allosteric site are diminished, restoring nonselective agonism and suggesting a possible allosteric interaction which is favorable to efficacy at all M1-M5 mAChRs.


Assuntos
Isoxazóis , Receptor Muscarínico M1 , Regulação Alostérica , Animais , Células CHO , Cricetinae , Humanos , Ligantes , Compostos de Amônio Quaternário
16.
Nature ; 597(7877): 571-576, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34497422

RESUMO

The adenosine A1 receptor (A1R) is a promising therapeutic target for non-opioid analgesic agents to treat neuropathic pain1,2. However, development of analgesic orthosteric A1R agonists has failed because of a lack of sufficient on-target selectivity as well as off-tissue adverse effects3. Here we show that [2-amino-4-(3,5-bis(trifluoromethyl)phenyl)thiophen-3-yl)(4-chlorophenyl)methanone] (MIPS521), a positive allosteric modulator of the A1R, exhibits analgesic efficacy in rats in vivo through modulation of the increased levels of endogenous adenosine that occur in the spinal cord of rats with neuropathic pain. We also report the structure of the A1R co-bound to adenosine, MIPS521 and a Gi2 heterotrimer, revealing an extrahelical lipid-detergent-facing allosteric binding pocket that involves transmembrane helixes 1, 6 and 7. Molecular dynamics simulations and ligand kinetic binding experiments support a mechanism whereby MIPS521 stabilizes the adenosine-receptor-G protein complex. This study provides proof of concept for structure-based allosteric drug design of non-opioid analgesic agents that are specific to disease contexts.


Assuntos
Analgesia , Receptor A1 de Adenosina/metabolismo , Adenosina/química , Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Analgesia/métodos , Animais , Sítios de Ligação , Modelos Animais de Doenças , Feminino , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/química , Subunidade alfa Gi2 de Proteína de Ligação ao GTP/metabolismo , Hiperalgesia/tratamento farmacológico , Lipídeos , Masculino , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor A1 de Adenosina/química , Transdução de Sinais/efeitos dos fármacos
17.
ACS Chem Neurosci ; 12(16): 3112-3123, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34351123

RESUMO

The M5 muscarinic acetylcholine receptor (mAChR) has emerged as an exciting therapeutic target for the treatment of addiction and behavioral disorders. This has been in part due to promising preclinical studies with the M5 mAChR selective negative allosteric modulator (NAM), ML375. The binding site of ML375 remains unknown, however, making it difficult to develop improved M5 mAChR selective modulators. To determine the possible location of the ML375 binding site, we used radioligand binding and functional assays to show that ML375 does not interact with the well-characterized "common" mAChR allosteric site located in the receptor's extracellular vestibule, nor a previously proposed second allosteric site recognized by the modulator, amiodarone. Molecular docking was used to predict potential allosteric sites within the transmembrane (TM) domain of the M5 mAChR. These predicted sites were assessed using M5-M2 mAChR receptor chimeras and further targeted with site-directed mutagenesis, which enabled the identification of a putative binding site for ML375 at the interface of TMs 2-4. Collectively, these results identify a third allosteric site at the M5 mAChR and highlight the ability of allosteric modulators to selectively target highly conserved proteins.


Assuntos
Receptor Muscarínico M1 , Receptores Muscarínicos , Regulação Alostérica , Sítio Alostérico , Sítios de Ligação , Simulação de Acoplamento Molecular , Receptor Muscarínico M1/genética , Receptor Muscarínico M4 , Receptores Muscarínicos/genética
18.
ChemMedChem ; 16(1): 216-233, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32851779

RESUMO

This study investigated the structure-activity relationships of 4-phenylpyridin-2-one and 6-phenylpyrimidin-4-one M1 muscarinic acetylcholine receptor (M1 mAChRs) positive allosteric modulators (PAMs). The presented series focuses on modifications to the core and top motif of the reported leads, MIPS1650 (1) and MIPS1780 (2). Profiling of our novel analogues showed that these modifications result in more nuanced effects on the allosteric properties compared to our previous compounds with alterations to the biaryl pendant. Further pharmacological characterisation of the selected compounds in radioligand binding, IP1 accumulation and ß-arrestin 2 recruitment assays demonstrated that, despite primarily acting as affinity modulators, the PAMs displayed different pharmacological properties across the two cellular assays. The novel PAM 7 f is a potential lead candidate for further development of peripherally restricted M1 PAMs, due to its lower blood-brain-barrier (BBB) permeability and improved exposure in the periphery compared to lead 2.


Assuntos
Piridonas/química , Receptor Muscarínico M1/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Meia-Vida , Humanos , Camundongos , Permeabilidade/efeitos dos fármacos , Piridonas/metabolismo , Piridonas/farmacologia , Receptor Muscarínico M1/química , Relação Estrutura-Atividade
19.
ACS Chem Neurosci ; 11(24): 4270-4279, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33196174

RESUMO

Designer receptors exclusively activated by designer drugs (DREADDs) have been successfully employed to activate signaling pathways associated with specific muscarinic acetylcholine receptor (mAChR) subtypes. The M1 DREADD mAChR displays minimal responsiveness to the endogenous agonist acetylcholine (ACh) but responds to clozapine-N-oxide (CNO), an otherwise pharmacologically inert ligand. We have previously shown that benzyl quinolone carboxylic acid (BQCA), an M1 mAChR positive allosteric modulator (PAM), can rescue ACh responsiveness at these receptors. However, whether this effect is chemotype specific or applies to next-generation M1 PAMs with distinct scaffolds is unknown. Here, we reveal that new M1 PAMs restore ACh function at the M1 DREADD while modulating ACh binding at the M1 wild-type mAChR. Importantly, we demonstrate that the modulation of ACh function by M1 PAMs is translated in vivo using transgenic M1 DREADD mice. Our data provide important insights into mechanisms that define allosteric ligand modulation of agonist affinity vs efficacy and how these effects play out in the regulation of in vivo responses.


Assuntos
Acetilcolina , Receptor Muscarínico M1 , Regulação Alostérica , Animais , Células CHO , Cricetinae , Cricetulus , Camundongos , Receptor Muscarínico M1/genética
20.
Front Pharmacol ; 11: 606656, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584282

RESUMO

The M1 and M4 muscarinic acetylcholine receptors (mAChRs) are highly pursued drug targets for neurological diseases, in particular for Alzheimer's disease and schizophrenia. Due to high sequence homology, selective targeting of any of the M1-M5 mAChRs through the endogenous ligand binding site has been notoriously difficult to achieve. With the discovery of highly subtype selective mAChR positive allosteric modulators in the new millennium, selectivity through targeting an allosteric binding site has opened new avenues for drug discovery programs. However, some hurdles remain to be overcome for these promising new drug candidates to progress into the clinic. One challenge is the potential for on-target side effects, such as for the M1 mAChR where over-activation of the receptor by orthosteric or allosteric ligands can be detrimental. Therefore, in addition to receptor subtype selectivity, a drug candidate may need to exhibit a biased signaling profile to avoid such on-target adverse effects. Indeed, recent studies in mice suggest that allosteric modulators for the M1 mAChR that bias signaling toward specific pathways may be therapeutically important. This review brings together details on the signaling pathways activated by the M1 and M4 mAChRs, evidence of biased agonism at these receptors, and highlights pathways that may be important for developing new subtype selective allosteric ligands to achieve therapeutic benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...