Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37507863

RESUMO

Repeated exposure to environmental ozone causes a chronic state of oxidative stress. This state is present in chronic degenerative diseases and induces a loss of control of the inflammatory response. Redox system dysfunction and failures in control of inflammatory responses are involved in a vicious circle that maintains and increases the degenerative process. The intestine also responds to secondary reactive species formed by exposure to ozone doses, generating noxious stimuli that increase degenerative damage. This review aims to elucidate how environmental pollution, mainly by ozone, induces a state of chronic oxidative stress with the loss of regulation of the inflammatory response, both in the intestine and in the brain, where the functionality of both structures is altered and plays a determining role in some neurodegenerative and chronic degenerative diseases. For this purpose, we searched for information on sites such as the Cochrane Library Database, PubMed, Scopus, and Medscape. Reviewing the data published, we can conclude that environmental pollutants are a severe health problem. Ozone pollution has different pathways of action, both molecular and systemic, and participates in neurodegenerative diseases such as Parkinson's and Alzheimer's disease as well in bowel diseases as Inflammatory Bowel Disease, Crohn's Disease, and Irritable Bowel Syndrome.

2.
Antioxidants (Basel) ; 11(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36009272

RESUMO

Ozone pollution, is a serious health problem worldwide. Repeated exposure to low ozone doses causes a loss of regulation of the oxidation-reduction systems, and also induces a chronic state of oxidative stress. This fact is of special importance for the regulation of different systems including the immune system and the inflammatory response. In addition, the oxidation-reduction balance modulates the homeostasis of these and other complex systems such as metabolism, survival capacity, cell renewal, and brain repair, etc. Likewise, it has been widely demonstrated that in chronic degenerative diseases, an alteration in the oxide-reduction balance is present, and this alteration causes a chronic loss in the regulation of the immune response and the inflammatory process. This is because reactive oxygen species disrupt different signaling pathways. Such pathways are related to the role of regulatory T cells (Treg) in inflammation. This causes an increase in chronic deterioration in the degenerative disease over time. The objective of this review was to study the relationship between environmental ozone pollution, the chronic state of oxidative stress and its effect on Treg cells, which causes the loss of regulation in the inflammatory response as well as the role played by antioxidant systems in various pathologies.

4.
J Bioenerg Biomembr ; 54(3): 145-152, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35347511

RESUMO

Pollution is considered a risk factor for cardiovascular disease; however, the mechanisms to explain this relationship are not well understood; ozone is one of the most abundant and studied air contaminants. Our study aimed to evaluate the effect of chronic exposition of rats to controlled low doses of ozone on oxidative stress, apoptosis, mitochondrial dynamics, and cardiac hypertrophy. Male Wistar rats were daily exposed to low ozone doses during 7, 15, 30, and 60 days, 4 h/day. Hearts were dissected, and homogenates were prepared. Oxidative stress was evaluated by TBARS and protein nitrosylation in addition to Superoxide dismutase 1 (SOD1) and Catalase levels; the apoptosis related-proteins caspase 3, caspase 9, Bax, Bcl-2, and the mitochondrial dynamic-associated proteins Fis1, Drp1, OPA1, and Mfn1 were quantified by western blot among the cardiac hypertrophy indicator alpha-actin (cardiac actin). There were no changes in the oxidative stress markers, however SOD1 expression increases. Caspase 3 expression decreased, whereas caspase 9 increased without changes in Bax or Bcl-2. Mitochondrial fission may be favored according to the increased expression of Drp1 but not changes in fusion-related proteins OPA1 and Mfn1. Finally, the molecular marker for cardiac hypertrophy was overexpressed after 30 and 60 days of ozone exposition. The chronic exposition to ozone induces a deleterious effect on cardiac mitochondria. Antioxidant defenses also show changes in relation to exposure time, as well as an apparent pro-hypertrophic effect associated with altered mitochondrial dynamics.


Assuntos
Dinaminas , Mitocôndrias Cardíacas , Proteínas Mitocondriais , Ozônio , Animais , Antioxidantes/metabolismo , Apoptose , Cardiomegalia , Caspase 3/metabolismo , Caspase 9/metabolismo , Dinaminas/metabolismo , Masculino , Mitocôndrias Cardíacas/metabolismo , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Ozônio/efeitos adversos , Ratos , Ratos Wistar , Superóxido Dismutase-1/metabolismo , Proteína X Associada a bcl-2/metabolismo
5.
Oxid Med Cell Longev ; 2021: 3790477, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790285

RESUMO

Low-ozone doses cause alterations in the oxidation-reduction mechanisms due to the increase in reactive oxygen species, alter cell signaling, and produce deleterious metabolic responses for cells. Adenosine 5'triphosphate (ATP) can act as a mediator in intercellular communication between neurons and glial cells. When there is an increase in extracellular ATP, a modification is promoted in the regulation of inflammation, energy metabolism, by affecting the intracellular signaling pathways that participate in these processes. The objective of this work was to study changes in the P2X7 receptor, and their relationship with the inflammatory response and energy metabolism, in a model of progressive neurodegeneration in the hippocampus of rats chronically exposed to low-ozone doses. Therefore, 72 male rats were exposed to low-ozone doses for different periods of time. After exposure to ozone was finished, rats were processed for immunohistochemical techniques, western blot, quantitative polymerase chain reaction (qPCR), and histological techniques for periodic acid-Schiff staining. The results showed immunoreactivity changes in the amount of the P2X7 protein. There was an increase in phosphorylation for glycogen synthase kinase 3-ß (GSK3-ß) as treatment continued. There were also increases in 27 interleukin 1 beta (IL-1 ß) and interleukin 17 (IL-17) and a decrease in interleukin 10 (IL-10). Furthermore, neuronal glycogen was found at 30 and 60 days, and an increase in caspase 3. An increase in mRNA was also shown for the P2X7 gene at 60 days, and GSK3-ß at 90 days of exposure. In conclusion, these results suggest that repeated exposure to low-ozone doses, such as those that can occur during highly polluted days, causes a state of oxidative stress, leading to alterations in the P2X7 receptors, which promote changes in the activation of signaling pathways for inflammatory processes and cell death, converging at a progressive neurodegeneration process, as may be happening in Alzheimer's disease.


Assuntos
Hipocampo/patologia , Doenças Neurodegenerativas/patologia , Doenças Neuroinflamatórias/patologia , Neurônios/patologia , Ozônio/toxicidade , Receptores Purinérgicos P2X7/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Interleucina-1beta/metabolismo , Masculino , Doenças Neurodegenerativas/induzido quimicamente , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Doenças Neuroinflamatórias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidantes Fotoquímicos/toxicidade , Estresse Oxidativo , Ratos , Ratos Wistar , Receptores Purinérgicos P2X7/genética
6.
Physiol Rep ; 3(5)2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25948822

RESUMO

The biogenic amine serotonin is a signaling molecule in the gastrointestinal tract, platelets, and nervous tissue. In nervous system, serotonin and its metabolites are under the control of the circadian timing system, but it is not known if daily variations of serotonin exist in the liver. To explore this possibility, we tested if the rhythmic pattern of serotonin metabolism was regulated by daytime restricted feeding (DRF) which is a protocol associated to the expression of the food entrained oscillator (FEO). The DRF involved food access for 2 h each day for 3 weeks. Control groups included food ad libitum (AL) as well as acute fasting and refeeding. Serotonin-related metabolites were measured by high pressure liquid chromatography, the anabolic and catabolic enzymes were evaluated by western blot, qPCR, and immunohistochemistry to generate 24-h profiles. The results showed in the AL group, liver serotonin, tryptophan hydroxylase-1 activity, and protein abundance as well as serotonin in plasma and serum were rhythmic and coordinated. The DRF protocol disrupted this coordinated response and damped the rhythmic profile of these parameters. We demonstrated the daily synthesis and the degradation of serotonin as well as its transport in blood. This rhythm could influence the physiological role played by serotonin in peripheral organs. DRF caused an uncoordinated response in the liver and blood serotonin rhythm. This modification could be a part of the physiology of the FEO.

7.
Liver Int ; 34(9): 1391-401, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25368882

RESUMO

BACKGROUND & AIMS: The circadian clock system in the liver plays important roles in regulating metabolism and energy homeostasis. Restricted feeding schedules (RFS) become an entraining stimulus that promotes adaptations that form part of an alternative circadian clock known as the food entrained oscillator (FEO). The aim of this study was to evaluate the daily variations of glutamine synthetase (GS) in liver under a daytime RFS. METHODS: Hepatic GS properties were analysed at 3-h intervals over a 24-h period in adult male Wistar rats maintained in a 12:12 h light­dark cycle. RFS group: food access for 2-h in light phase, during 3 weeks. AL group: feeding ad libitum. Fa group: acute fast (21 h). Fa­Re group: acute fast followed by refed 2 h.mRNA expression was measured by RT-qPCR, protein presence by Western-blot and immunohistochemistry, enzyme activity by a spectrophotometric assay, and glutamine by high pressure liquid chromatography. RESULTS AND CONCLUSIONS: Restricted feeding schedule induced circadian rhythmicity inmRNA levels of GS and the loss of the rhythmic pattern in mitochondrial GS activity. GS activity in liver homogenates displayed a robust rhythmic pattern in AL that was not modified by RFS. The presence of GS and its zonal distribution did not show rhythmic pattern in both groups. However, acute Fa and Fa­Re diminished GS protein and activity in liver homogenates. Hepatic glutamine concentrations showed a 24-h rhythmic pattern in both groups, in an antiphasic pattern. In conclusion, daytime RFS influences the liver GS system at different levels, that could be part of rheostatic adaptations associated to the FEO, and highlight the plasticity of this system.


Assuntos
Adaptação Fisiológica/fisiologia , Ritmo Circadiano/fisiologia , Metabolismo Energético/fisiologia , Métodos de Alimentação , Glutamato-Amônia Ligase/metabolismo , Fígado/enzimologia , Análise de Variância , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , Primers do DNA/genética , Imuno-Histoquímica , Masculino , RNA Mensageiro/genética , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
8.
Brain Res ; 1417: 36-44, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21911207

RESUMO

The results from various studies have indicated possible functional relationships between crayfish electroretinogram (ERG) rhythmic amplitude changes and the serotonergic pathways projecting from the central brain through the optic neuropils to the eye, but to date, this functional interaction has not been proven. Here, in a set of experiments using an isolated eyestalk-brain preparation, we investigated whether there is a circadian input from the brain to retina that regulates this rhythm. We sought to determine whether the protocerebral bridge (PB) stimulation affects the ERG amplitude in accordance with the zeitgeber time (ZT) and whether 5-HT modulates the associate input. Our results showed that photic stimulation of retina produced changes in both the amplitude and the frequency of spontaneous electrical activity in the protocerebral neuropils. In addition, electrical stimulation of the medial protocerebrum, particularly the PB, produced statistically significant changes in the ERG that depended on both the time of day and the level of serotonin. This suggests that pathways between retina and PB seem to be serotonergic.


Assuntos
Astacoidea/fisiologia , Encéfalo/fisiologia , Vias Neurais/fisiologia , Retina/fisiologia , Serotonina/metabolismo , Animais , Ritmo Circadiano/fisiologia , Eletrorretinografia , Neurópilo/fisiologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...