Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 283: 121464, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35306229

RESUMO

Micropatterned suspension culture creates consistently sized and shaped cell aggregates but has not produced organotypic structures from stable cells, thus restricting its use in accurate disease modeling. Here, we show that organotypic structure is achieved in hybrid suspension culture via supplementation of soluble extracellular matrix (ECM). We created a viable lung organoid from epithelial, endothelial, and fibroblast human stable cell lines in suspension culture. We demonstrate the importance of soluble ECM in organotypic patterning with the emergence of lumen-like structures with airspace showing feasible gas exchange units, formation of branching, perfusable vasculature, and long-term 70-day maintenance of lumen structure. Our results show a dependent relationship between enhanced fibronectin fibril assembly and the incorporation of ECM in the organoid. We successfully applied this technology in modeling lung fibrosis via bleomycin induction and test a potential antifibrotic drug in vitro while maintaining fundamental cell-cell interactions in lung tissue. Our human fluorescent lung organoid (hFLO) model represents features of pulmonary fibrosis which were ameliorated by fasudil treatment. We also demonstrate a 3D culture method with potential of creating organoids from mature cells, thus opening avenues for disease modeling and regenerative medicine, enhancing understanding of lung cell biology in health and lung disease.


Assuntos
Matriz Extracelular , Fibrose Pulmonar , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Pulmão , Organoides
2.
Cells ; 10(11)2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34831431

RESUMO

Two of the main pathologies characterizing dysferlinopathies are disrupted muscle membrane repair and chronic inflammation, which lead to symptoms of muscle weakness and wasting. Here, we used recombinant human Galectin-1 (rHsGal-1) as a therapeutic for LGMD2B mouse and human models. Various redox and multimerization states of Gal-1 show that rHsGal-1 is the most effective form in both increasing muscle repair and decreasing inflammation, due to its monomer-dimer equilibrium. Dose-response testing shows an effective 25-fold safety profile between 0.54 and 13.5 mg/kg rHsGal-1 in Bla/J mice. Mice treated weekly with rHsGal-1 showed downregulation of canonical NF-κB inflammation markers, decreased muscle fat deposition, upregulated anti-inflammatory cytokines, increased membrane repair, and increased functional movement compared to non-treated mice. Gal-1 treatment also resulted in a positive self-upregulation loop of increased endogenous Gal-1 expression independent of NF-κB activation. A similar reduction in disease pathologies in patient-derived human cells demonstrates the therapeutic potential of Gal-1 in LGMD2B patients.


Assuntos
Galectina 1/uso terapêutico , Distrofia Muscular do Cíngulo dos Membros/patologia , Animais , Biomarcadores/metabolismo , Citocinas/metabolismo , Disferlina/deficiência , Disferlina/metabolismo , Humanos , Inflamação/patologia , Masculino , Membranas , Camundongos , Fibras Musculares Esqueléticas/metabolismo , NF-kappa B/metabolismo , Multimerização Proteica , Proteínas Recombinantes/uso terapêutico , Transdução de Sinais
3.
Sci Rep ; 9(1): 934, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700748

RESUMO

We previously identified a nuclear variant of bone morphogenetic protein 2 (BMP2), named nBMP2, that is translated from an alternative start codon. Decreased nuclear localization of nBMP2 in the nBmp2NLStm mouse model leads to muscular, neurological, and immune phenotypes-all of which are consistent with aberrant intracellular calcium (Ca2+) response. Ca2+ response in these mice, however, has yet to be measured directly. Because a prior study suggested impairment of macrophage function in nBmp2NLStm mutant mice, bone marrow derived (BMD) macrophages and splenic macrophages were isolated from wild type and nBmp2NLStm mutant mice. Immunocytochemistry revealed that nuclei of both BMD and splenic macrophages from wild type mice contain nBMP2, while the protein is decreased in nuclei of nBmp2NLStm mutant macrophages. Live-cell Ca2+ imaging and engulfment assays revealed that Ca2+ response and phagocytosis in response to bacterial supernatant are similar in BMD macrophages isolated from naïve (uninfected) nBmp2NLStm mutant mice and wild type mice, but are deficient in splenic macrophages isolated from mutant mice after secondary systemic infection with Staphylococcus aureus, suggesting progressive impairment as macrophages respond to infection. This direct evidence of impaired Ca2+ handling in nBMP2 mutant macrophages supports the hypothesis that nBMP2 plays a role in Ca2+ response.


Assuntos
Proteína Morfogenética Óssea 2/biossíntese , Cálcio/metabolismo , Núcleo Celular/metabolismo , Expressão Gênica , Macrófagos/metabolismo , Proteínas Nucleares/biossíntese , Animais , Proteína Morfogenética Óssea 2/genética , Núcleo Celular/genética , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...