Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 29(3): 319-334, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37033760

RESUMO

Chenopodium quinoa Willd. is a crop species domesticated over 5000 years ago. This species is highly diverse, with a geographical distribution that covers more than 5000 km from Colombia to Chile, going through a variety of edaphoclimatic conditions. Quinoa grains have great nutritional quality, raising interest at a worldwide level. In this work, by using shotgun proteomics and in silico analysis, we present an overview of mature quinoa seed proteins from a physiological context and considering the process of seed maturation and future seed germination. For this purpose, we selected grains from four contrasting quinoa cultivars (Amarilla de Maranganí, Chadmo, Sajama and Nariño) with different edaphoclimatic and geographical origins. The results give insight on the most important metabolic pathways for mature quinoa seeds including: starch synthesis, protein bodies and lipid bodies composition, reserves and their mobilization, redox homeostasis, and stress related proteins like heat-shock proteins (HSPs) and late embryogenesis abundant proteins (LEAs), as well as evidence for capped and uncapped mRNA translation. LEAs present in our analysis show a specific pattern of expression matching that of other species. Overall, this work presents a complete snapshot of quinoa seeds physiological context, providing a reference point for further studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-023-01295-8.

2.
Planta ; 254(6): 132, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34821986

RESUMO

MAIN CONCLUSION: Al responsive proteins are associated with starch, sucrose, and other carbohydrate metabolic pathways. Sucrose synthase is a candidate to Al tolerance. Al responses are regulated at transcriptional and post-transcriptional levels. Aluminum toxicity is one of the important abiotic stresses that affects worldwide crop production. The soluble form of aluminum (Al3+) inhibits root growth by altering water and nutrient uptake, a process that also reduces plant growth and development. Under long-term Al3+ exposure, plants can activate several tolerance mechanisms. To date, no reports of large-scale proteomic data concerning maize responses to this ion have been published. To investigate the post-transcriptional regulation in response to Al toxicity, we performed label-free quantitative proteomics for comparative analysis of two Al-contrasting popcorn inbred lines and an Al-tolerant commercial hybrid during 72 h under Al-stress conditions. A total of 489 differentially accumulated proteins (DAPs) were identified in the Al-sensitive inbred line, 491 in the Al-tolerant inbred line, and 277 in the commercial hybrid. Among them, 120 DAPs were co-expressed in both Al tolerant genotypes. Bioinformatics analysis indicated that starch, sucrose, and other components of carbohydrate metabolism and glycolysis/gluconeogenesis are the biochemical processes regulated in response to Al toxicity. Sucrose synthase accumulation and an increase in sucrose content and starch degradation suggest that these components may enhance popcorn tolerance to Al stress. The accumulation of citrate synthase suggests a key role for this enzyme in the detoxification process in the Al-tolerant inbred line. The integration of transcriptomic and proteomic data indicates that the Al tolerance response presents a complex regulatory network into the transcription and translation dynamics of popcorn root development.


Assuntos
Alumínio , Proteômica , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico , Zea mays/genética , Zea mays/metabolismo
3.
Plant Physiol Biochem ; 143: 109-118, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31491701

RESUMO

The use of light-emitting diode (LED) lamps has been shown to be a promising approach for improving somatic embryo maturation during somatic embryogenesis. The aim of this work was to study the influence of the light source on somatic embryo differentiation and its relationship with the differential abundance of proteins in the Carica papaya L. 'Golden' embryogenic callus at 14 days of maturation. The white plus medium-blue (WmB) LED and fluorescent lamp treatments produced an average of 82.4 and 47.6 cotyledonary somatic embryos per callus, respectively. A shotgun proteomics analysis revealed 28 upaccumulated and 7 downaccumulated proteins. The proteins upaccumulated in the embryogenic callus matured under the WmB LED lamp compared with that matured under the fluorescent lamp included indole-3-acetic acid-amido synthetase (GH3) and actin-depolymerizing factor 2 (ADF2), which are involved in the regulation of auxin levels by auxin conjugation and transport. Additionally, proteins related to energy production (aconitate, ADH1, GAPCp, PKp and TPI), cell wall remodeling (PG and GLPs), and intracellular trafficking (NUP50A, IST1, small GTPases and H+-PPase) showed significantly higher abundance in the embryogenic callus incubated under the WmB LED lamp than in that incubated under the fluorescent lamp. The results showed that the WmB LED lamp improved somatic embryo maturation in association with the differential accumulation of proteins in the C. papaya 'Golden' embryogenic callus.


Assuntos
Carica/metabolismo , Proteômica/métodos , Carica/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas de Embriogênese Somática de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA