Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 100(20): 11429-34, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-13679573

RESUMO

Cytoplasmic mRNA localization provides a means of generating cell asymmetry and segregating protein activity. Previous studies have identified two mRNAs that localize to the bud tips of the yeast Saccharomyces cerevisiae. To identify additional localized mRNAs, we immunoprecipitated the RNA transport components She2p, She3p, and Myo4p and performed DNA microarray analysis of their associated RNAs. A secondary screen, using a GFP-tagged RNA reporter assay, identified 22 mRNAs that are localized to bud tips. These messages encode a wide variety of proteins, including several involved in stress responses and cell wall maintenance. Many of these proteins are asymmetrically localized to buds. However, asymmetric localization also occurs in the absence of RNA transport, suggesting the existence of redundant protein localization mechanisms. In contrast to findings in metazoans, the untranslated regions are dispensable for mRNA localization in yeast. This study reveals an unanticipated widespread use of RNA transport in budding yeast.


Assuntos
Citoplasma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Transporte Biológico , Testes de Precipitina
3.
Proc Natl Acad Sci U S A ; 97(24): 13132-7, 2000 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-11087864

RESUMO

Vg1, a member of the transforming growth factor-beta family involved in mesoderm induction, is translated subsequent to the localization of its mRNA to the vegetal pole of Xenopus oocytes. Whereas the localization of Vg1 mRNA is known to be directed by the 3' untranslated region (UTR), the basis of its translational regulation is unknown. We show here that the 3' UTR of Vg1 causes translational repression of two different reporter mRNAs in Xenopus oocytes. A 350-nucleotide region of the 3' UTR, which is distinct from the localization element, is necessary and sufficient for mediating translational repression and specifically binds to a 38-kDa polypeptide. The translational repression activity is found throughout the oocyte and at all stages of oogenesis. These results suggest that factors colocalized with Vg1 mRNA at the vegetal pole relieve translational repression to allow expression of Vg1 protein.


Assuntos
Regulação da Expressão Gênica/fisiologia , Glicoproteínas/genética , Oócitos/fisiologia , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Polaridade Celular , Feminino , Oócitos/citologia , RNA Mensageiro/análise , Transcrição Gênica , Fator de Crescimento Transformador beta/genética , Proteínas de Xenopus , Xenopus laevis
4.
J Cell Sci ; 113 ( Pt 22): 3939-46, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11058081

RESUMO

Using squid axoplasm as a model system, we have visualized the fast transport of non-filamentous neurofilament protein particles along axonal microtubules. This transport occurs at speeds of 0.5-1.0 microm/second and the majority of neurofilament particles stain with kinesin antibody. These observations demonstrate, for the first time, that fast (0.5-1.0 microm/second) transport of neurofilament proteins occurs along microtubules. In addition, our studies suggest that neurofilament protein can be transported as non-membrane bound, nonfilamentous subunits along axons, and that the transport is kinesin-dependent. Microtubule-based fast transport might therefore provide a mechanism for the distribution and turnover of neurofilament, and perhaps other cytoskeletal proteins, throughout neurons.


Assuntos
Axônios/fisiologia , Microtúbulos/fisiologia , Proteínas de Neurofilamentos/metabolismo , Sequência de Aminoácidos , Animais , Transporte Axonal , Decapodiformes , Epitopos/química , Imunofluorescência , Cinesinas/análise , Cinesinas/química , Cinesinas/metabolismo , Cinética , Dados de Sequência Molecular , Subunidades Proteicas , Transporte Proteico , Fatores de Tempo
5.
J Cell Biol ; 151(5): 1081-92, 2000 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-11086009

RESUMO

Conventional kinesin, a dimeric molecular motor, uses ATP-dependent conformational changes to move unidirectionally along a row of tubulin subunits on a microtubule. Two models have been advanced for the major structural change underlying kinesin motility: the first involves an unzippering/zippering of a small peptide (neck linker) from the motor catalytic core and the second proposes an unwinding/rewinding of the adjacent coiled-coil (neck coiled-coil). Here, we have tested these models using disulfide cross-linking of cysteines engineered into recombinant kinesin motors. When the neck linker motion was prevented by cross-linking, kinesin ceased unidirectional movement and only showed brief one-dimensional diffusion along microtubules. Motility fully recovered upon adding reducing agents to reverse the cross-link. When the neck linker motion was partially restrained, single kinesin motors showed biased diffusion towards the microtubule plus end but could not move effectively against a load imposed by an optical trap. Thus, partial movement of the neck linker suffices for directionality but not for normal processivity or force generation. In contrast, preventing neck coiled-coil unwinding by disulfide cross-linking had relatively little effect on motor activity, although the average run length of single kinesin molecules decreased by 30-50%. These studies indicate that conformational changes in the neck linker, not in the neck coiled-coil, drive processive movement by the kinesin motor.


Assuntos
Dissulfetos/metabolismo , Cinesinas/química , Cinesinas/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Difusão , Dimerização , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Proteínas Motores Moleculares/genética , Mutagênese/fisiologia , Estrutura Secundária de Proteína/fisiologia
6.
J Cell Biol ; 151(5): 1093-100, 2000 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-11086010

RESUMO

Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.


Assuntos
Cinesinas/química , Cinesinas/genética , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Sequência de Aminoácidos , Eletroquímica , Cinesinas/metabolismo , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Mutagênese/fisiologia , Mutação Puntual/fisiologia , Engenharia de Proteínas , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína/fisiologia , Sais , Tubulina (Proteína)/metabolismo
7.
Science ; 290(5490): 341-4, 2000 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-11030653

RESUMO

Asymmetric localization of proteins plays a key role in many cellular processes, including cell polarity and cell fate determination. Using DNA microarray analysis, we identified a plasma membrane protein-encoding mRNA (IST2) that is transported to the bud tip by an actomyosin-based process. mRNA localization created a higher concentration of IST2 protein in the bud compared with that of the mother cell, and this asymmetry was maintained by a septin-mediated membrane diffusion barrier at the mother-bud neck. These results indicate that yeast creates distinct plasma membrane compartments, as has been described in neurons and epithelial cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Cadeias Pesadas de Miosina , Miosina Tipo V , RNA Mensageiro/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Actomiosina/metabolismo , Transporte Biológico , Compartimento Celular , Ciclo Celular , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Difusão , Proteínas Fúngicas/genética , Proteínas de Membrana/genética , Mutação , Miosinas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA Fúngico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Temperatura , Fatores de Transcrição/genética
8.
Curr Biol ; 10(15): 927-30, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-10959841

RESUMO

The chemotaxis signal protein CheY of enteric bacteria shuttles between transmembrane methyl-accepting chemotaxis protein (MCP) receptor complexes and flagellar basal bodies [1]. The basal body C-rings, composed of the FliM, FliG and FliN proteins, form the rotor of the flagellar motor [2]. Phosphorylated CheY binds to isolated FliM [3] and may also interact with FliG [4], but its binding to basal bodies has not been measured. Using the chemorepellent acetate to phosphorylate and acetylate CheY [5], we have measured the covalent-modification-dependent binding of a green fluorescent protein-CheY fusion (GFP-CheY) to motor assemblies in bacteria lacking MCP complexes by evanescent wave microscopy [6]. At acetate concentrations that cause solely clockwise rotation, GFP-CheY molecules bound to native basal bodies or to overproduced rotor complexes with a stoichiometry comparable to the number of C-ring subunits. GFP-CheY did not bind to rotors lacking FIiM/FliN, showing that these subunits are essential for the association. This assay provides a new means of monitoring protein-protein interactions in signal transduction pathways in living cells.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Escherichia coli/metabolismo , Flagelos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Escherichia coli/química , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli , Flagelos/química , Flagelos/ultraestrutura , Proteínas de Fluorescência Verde , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas Quimiotáticas Aceptoras de Metil , Microscopia de Fluorescência , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Philos Trans R Soc Lond B Biol Sci ; 355(1396): 449-57, 2000 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-10836498

RESUMO

Kinesin, a microtubule-based motor, and myosin, an actin-based motor, share a similar core structure, indicating that they arose from a common ancestor. However, kinesin lacks the long lever-arm domain that is believed to drive the myosin power stroke. Here, we present evidence that a much smaller region of ca. 10-40 amino acids serves as a mechanical element for kinesin motor proteins. These 'neck regions' are class conserved and have distinct structures in plus-end and minus-end-directed kinesin motors. Mutagenesis studies also indicate that the neck regions are involved in coupling ATP hydrolysis and energy into directional motion along the microtubule. We suggest that the kinesin necks drive motion by undergoing a conformational change in which they detach and re-dock onto the catalytic core during the ATPase cycle. Thus, kinesin and myosin have evolved unique mechanical elements that amplify small, nucleotide-dependent conformational changes that occur in their similar catalytic cores.


Assuntos
Cinesinas/química , Cinesinas/fisiologia , Proteínas Motores Moleculares/fisiologia , Movimento/fisiologia , Animais , Modelos Moleculares , Proteínas Motores Moleculares/química , Contração Muscular , Miosinas/química , Miosinas/fisiologia , Conformação Proteica
11.
Biochemistry ; 39(18): 5265-73, 2000 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-10819995

RESUMO

Conventional kinesin is a microtubule-based motor protein that is an important model system for understanding mechanochemical transduction. To identify regions of the kinesin protein that participate in microtubule binding and force production, Woehlke et al. [(1997) Cell 90, 207-216] generated 35 alanine mutations in solvent-exposed residues. Here, we have performed presteady-state kinetic and single molecule motility analyses on three of these mutants [Y138A, loop 11 triple (L248A/D249A/E250A), and E311A] that exhibited a similar approximately 3-fold reduction in both microtubule gliding velocity and microtubule-stimulated ATPase activity. All mutants showed normal second-order ATP binding kinetics, indicating correct folding of the active site. The Y138A and loop 11 triple mutants were defective both in nucleotide hydrolysis and in microtubule-stimulated ADP release rates, the latter suggesting a defect in allosteric communication between the microtubule and the active site. A single molecule fluorescence assay further revealed that the loop 11 mutant is defective in initiating processive motion, suggesting that this loop is important for the initial contact between kinesin and the microtubule. Y138A, on the other hand, can bind to the microtubule normally but cannot move processively. For E311A, neither the rate of nucleotide hydrolysis nor ADP release could account for its slower ATPase and gliding velocity, which suggests that either phosphate release or a conformational transition is rate-limiting in this mutant. The single molecule assay showed that E311A has a reduced velocity of movement, but is not defective in processivity. Thus, while these mutants behave similarly in solution ATPase and multiple motor gliding assays, kinetic and single molecule analyses reveal defects in distinct processes in kinesin's mechanochemical cycle.


Assuntos
Adenosina Trifosfatases/química , Cinesinas/química , Proteínas Motores Moleculares/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Fluorescência , Humanos , Cinesinas/genética , Cinética , Microtúbulos/química , Modelos Moleculares , Proteínas Motores Moleculares/genética , Mutação , Fosfatos/metabolismo , Ligação Proteica , Dobramento de Proteína
12.
Proc Natl Acad Sci U S A ; 97(10): 5273-8, 2000 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-10792032

RESUMO

In Saccharomyces cerevisiae, mRNA encoding the cell-fate determinant Ash1p is localized to the distal tip of daughter cells. Five SHE genes are required for proper Ash1 mRNA localization, one of which encodes the myosin Myo4p. We show that three of the five She proteins, She2p, She3p, and Myo4p, colocalize with Ash1 mRNA in vivo and coimmunoprecipitate with Ash1 mRNA from cell extracts. We also find that She3p binds to Myo4p in the absence of RNA and She2p is required for binding She3p-Myo4p to Ash1 mRNA. These results suggest that She3p acts as an adapter protein that docks the myosin motor onto an Ash1-She2p ribonucleoprotein complex.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Cadeias Pesadas de Miosina , Miosina Tipo V , Miosinas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Sítios de Ligação , Proteínas de Transporte/isolamento & purificação , Proteínas Fúngicas/isolamento & purificação , Modelos Biológicos , Miosinas/isolamento & purificação , RNA Fúngico/genética , RNA Fúngico/isolamento & purificação , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Fatores de Transcrição/isolamento & purificação , Dedos de Zinco
13.
Biochemistry ; 39(10): 2805-14, 2000 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-10704233

RESUMO

Kinesin motor proteins use ATP hydrolysis for transport along microtubules in the cell. We sought to identify small organic ligands to inhibit kinesin's activity. Candidate molecules were identified by computational docking of commercially available compounds using the computer program DOCK. Compounds were docked at either of two sites, and a selection was tested for inhibition of microtubule-stimulated ATPase activity. Twenty-two submillimolar inhibitors were identified. Several inhibitors appeared to be competitive for microtubule binding and not for ATP binding, and three compounds showed 50% inhibition down to single-digit micromolar levels. Most inhibitors grouped into four distinct classes (fluoresceins, phenolphthaleins, anthraquinones, and naphthylene sulfonates). We measured the binding of one inhibitor, rose bengal lactone (RBL), to kinesin (dissociation constant 2.5 microM) by its increase in steady-state fluorescence anisotropy. The RBL binding site on kinesin was localized by fluorescent resonance energy transfer (FRET) using a donor fluorophore (coumarin) covalently attached at unique, surface-exposed cysteine residues engineered at positions 28, 149, 103, 220, or 330. RBL was found to bind in its original docked site: the pocket cradled by loop 8 and beta-strand 5 in kinesin's three-dimensional structure. These results confirm this region's role in microtubule binding and identify this pocket as a novel binding site for kinesin inhibition.


Assuntos
Biologia Computacional/métodos , Inibidores Enzimáticos/química , Cinesinas/antagonistas & inibidores , Cinesinas/química , Software , Adenosina Trifosfatases/antagonistas & inibidores , Sítios de Ligação , Simulação por Computador , Corantes Fluorescentes/química , Humanos , Cinesinas/metabolismo , Modelos Moleculares , Rosa Bengala/química , Relação Estrutura-Atividade
14.
Protein Sci ; 9(2): 213-7, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-10716173

RESUMO

Genetically-encoded affinity tags constitute an important strategy for purifying proteins. Here, we have designed a novel affinity matrix based on the his-arsenical fluorescein dye FlAsH, which specifically recognizes short alpha-helical peptides containing the sequence CCXXCC (Griffin BA, Adams SR, Tsien RY, 1998, Science 281:269-272). We find that kinesin tagged with this cysteine-containing helix binds specifically to FlAsH resin and can be eluted in a fully active form. This affinity tag has several advantages over polyhistidine, the only small affinity tag in common use. The protein obtained with this single chromatographic step from crude Escherichia coli lysates is purer than that obtained with nickel affinity chromatography of 6xHis tagged kinesin. Moreover, unlike nickel affinity chromatography, which requires high concentrations of imidazole or pH changes for elution, protein bound to the FlAsH column can be completely eluted by dithiothreitol. Because of these mild elution conditions, FlAsH affinity chromatography is ideal for recovering fully active protein and for the purification of intact protein complexes.


Assuntos
Arsênio , Cromatografia de Afinidade/métodos , Fluoresceínas , Corantes Fluorescentes , Compostos Organometálicos , Proteínas/isolamento & purificação , Marcadores de Afinidade , Sequência de Aminoácidos , Escherichia coli/genética , Fluoresceínas/síntese química , Corantes Fluorescentes/síntese química , Cinesinas/química , Cinesinas/genética , Cinesinas/isolamento & purificação , Dados de Sequência Molecular , Compostos Organometálicos/síntese química , Proteínas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
15.
Curr Biol ; 10(3): 157-60, 2000 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-10679326

RESUMO

Kinesin motor proteins execute a variety of intracellular microtubule-based transport functions [1]. Kinesin motor domains contain a catalytic core, which is conserved throughout the kinesin superfamily, followed by a neck region, which is conserved within subfamilies and has been implicated in controlling the direction of motion along a microtubule [2] [3]. Here, we have used mutational analysis to determine the functions of the catalytic core and the approximately 15 amino acid 'neck linker' (a sequence contained within the neck region) of human conventional kinesin. Replacement of the neck linker with a designed random coil resulted in a 200-500-fold decrease in microtubule velocity, although basal and microtubule-stimulated ATPase rates were within threefold of wild-type levels. The catalytic core of kinesin, without any additional kinesin sequence, displayed microtubule-stimulated ATPase activity, nucleotide-dependent microtubule binding, and very slow plus-end-directed motor activity. On the basis of these results, we propose that the catalytic core is sufficient for allosteric regulation of microtubule binding and ATPase activity and that the kinesin neck linker functions as a mechanical amplifier for motion. Given that the neck linker undergoes a nucleotide-dependent conformational change [4], this region might act in an analogous fashion to the myosin converter, which amplifies small conformational changes in the myosin catalytic core [5,6].


Assuntos
Cinesinas/química , Cinesinas/metabolismo , Microtúbulos/fisiologia , Proteínas Motores Moleculares/metabolismo , Adenosina Trifosfatases/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Análise Mutacional de DNA , Humanos , Cinesinas/genética , Microtúbulos/metabolismo , Modelos Moleculares , Proteínas Motores Moleculares/química , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Espectrometria de Fluorescência/métodos
16.
J Cell Biol ; 148(3): 427-40, 2000 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-10662770

RESUMO

Localization of bicoid (bcd) mRNA to the anterior and oskar (osk) mRNA to the posterior of the Drosophila oocyte is critical for embryonic patterning. Previous genetic studies implicated exuperantia (exu) in bcd mRNA localization, but its role in this process is not understood. We have biochemically isolated Exu and show that it is part of a large RNase-sensitive complex that contains at least seven other proteins. One of these proteins was identified as the cold shock domain RNA-binding protein Ypsilon Schachtel (Yps), which we show binds directly to Exu and colocalizes with Exu in both the oocyte and nurse cells of the Drosophila egg chamber. Surprisingly, the Exu-Yps complex contains osk mRNA. This biochemical result led us to reexamine the role of Exu in the localization of osk mRNA. We discovered that exu-null mutants are defective in osk mRNA localization in both nurse cells and the oocyte. Furthermore, both Exu/Yps particles and osk mRNA follow a similar temporal pattern of localization in which they transiently accumulate at the oocyte anterior and subsequently localize to the posterior pole. We propose that Exu is a core component of a large protein complex involved in localizing mRNAs both within nurse cells and the developing oocyte.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Proteínas do Ovo/metabolismo , Proteínas de Insetos/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas do Ovo/genética , Proteínas do Ovo/isolamento & purificação , Feminino , Humanos , Dados de Sequência Molecular , Mutagênese , Oócitos/metabolismo , Oogênese , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/isolamento & purificação , Ribonuclease Pancreático/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/isolamento & purificação , Homologia de Sequência de Aminoácidos
17.
Cell Motil Cytoskeleton ; 45(1): 51-7, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-10618166

RESUMO

The dynamic properties of microtubules (MTs) are important for a wide variety of cellular processes, including cell division and morphogenesis. MT assembly and disassembly in vivo are regulated by cellular factors that influence specific parameters of MT dynamics. Here, we describe the characterization of a previously reported MT assembly inhibitor activity from Xenopus oocytes [Gard and Kirschner, 1987: J. Cell Biol. 105:2191-2201]. Video microscopy measurements reveal that the inhibitor specifically decreases the plus end growth rate of MTs and increases the critical concentration for tubulin. However, catastrophe frequency, rescue frequency, and shrinkage rates are not affected by the activity. Chromatography on Mono Q and hydroxyapatite columns has shown that the activity cofractionates with a subpopulation of tubulin. This tubulin subpopulation and the MT assembly inhibitor activity also co-migrate with a large S value (25-30S) on sucrose gradients. The high molecular weight tubulin complex and the MT assembly inhibitor activity are both developmentally regulated and disappear after oocyte maturation with progesterone.


Assuntos
Microtúbulos/metabolismo , Oócitos/química , Animais , Bovinos , Extratos Celulares/química , Extratos Celulares/farmacologia , Fracionamento Celular , Feminino , Masculino , Microtúbulos/efeitos dos fármacos , Proteínas/farmacologia , Ouriços-do-Mar , Cauda do Espermatozoide/efeitos dos fármacos , Cauda do Espermatozoide/metabolismo , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Xenopus laevis
18.
Science ; 288(5463): 88-95, 2000 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-10753125

RESUMO

The microtubule-based kinesin motors and actin-based myosin motors generate motions associated with intracellular trafficking, cell division, and muscle contraction. Early studies suggested that these molecular motors work by very different mechanisms. Recently, however, it has become clear that kinesin and myosin share a common core structure and convert energy from adenosine triphosphate into protein motion using a similar conformational change strategy. Many different types of mechanical amplifiers have evolved that operate in conjunction with the conserved core. This modular design has given rise to a remarkable diversity of kinesin and myosin motors whose motile properties are optimized for performing distinct biological functions.


Assuntos
Cinesinas/fisiologia , Proteínas Motores Moleculares/fisiologia , Miosinas/fisiologia , Actinas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Citoesqueleto/metabolismo , Evolução Molecular , Cinesinas/química , Microtúbulos/metabolismo , Modelos Biológicos , Modelos Moleculares , Proteínas Motores Moleculares/química , Miosinas/química , Conformação Proteica , Estrutura Secundária de Proteína
19.
Traffic ; 1(1): 38-44, 2000 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11208058

RESUMO

Cytoplasmic dynein, a large minus-end-directed microtubule motor, performs multiple functions during the cell cycle. In interphase, dynein moves membrane organelles, while in mitosis it moves chromosomes and helps to form the mitotic spindle. The cell-cycle regulation of dynein activity may be controlled, at least in part, by the phosphorylation of its light intermediate chains (DLIC), since a 10-fold increase in light intermediate chain phosphorylation correlates with a decrease in dynein-based membrane transport of similar magnitude in mitosis. In this study, we sought to identify the kinase responsible for this potentially important phosphorylation event. We show that bacterially-expressed chicken light intermediate chain (chDLIC) will undergo mitosis-specific phosphorylation when added to Xenopus egg extracts. Mutation of a conserved cdc2 kinase consensus site (Ser197) abolishes this phosphorylation event, and mass spectroscopy analysis confirms that the wild-type DLIC is stoichiometrically phosphorylated at this site when incubated with metaphase but not interphase extracts. We also show that purified cdc2 kinase phosphorylates purified DLICs at Ser197 in vitro and that Ser197 phosphorylation is dramatically reduced in metaphase extracts depleted of cdc2 kinase. These results indicate that cdc2 kinase directly phosphorylates dynein and thus may be an important regulator of dynein activity in the cell cycle.


Assuntos
Proteína Quinase CDC2/metabolismo , Dineínas/metabolismo , Mitose/fisiologia , Proteínas Motores Moleculares/metabolismo , Motivos de Aminoácidos/genética , Animais , Transporte Biológico , Proteína Quinase CDC2/genética , Proteínas de Ciclo Celular/isolamento & purificação , Proteínas de Ciclo Celular/metabolismo , Galinhas , Cromatografia de Afinidade , Dineínas/química , Humanos , Immunoblotting , Fosforilação , Xenopus laevis
20.
Trends Cell Biol ; 9(12): M38-42, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10611679

RESUMO

In a universe that is dominated by increasing entropy, living organisms are a curious anomaly. The organization that distinguishes living organisms from their inanimate surroundings relies upon their ability to execute vectorial processes, such as directed movements and the assembly of macromolecules and organelle systems. Many of these phenomena are executed by molecular motors that harness chemical potential energy to perform mechanical work and unidirectional motion. This article explores how these remarkable protein machines might have evolved and what roles they could play in biological and medical research in the coming decades.


Assuntos
Proteínas Motores Moleculares , Proteínas/metabolismo , Animais , Citoesqueleto/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...