Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
3.
Malar J ; 23(1): 64, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429807

RESUMO

Malaria remains a global health challenge, disproportionately affecting vulnerable communities. Despite substantial progress, the emergence of anti-malarial drug resistance poses a constant threat. The Greater Mekong Subregion (GMS), which includes Cambodia, China's Yunnan province, Lao People's Democratic Republic, Myanmar, Thailand, and Viet Nam has been the epicentre for the emergence of resistance to successive generations of anti-malarial therapies. From the perspective of the World Health Organization (WHO), this article considers the collaborative efforts in the GMS, to contain Plasmodium falciparum artemisinin partial resistance and multi-drug resistance and to advance malaria elimination. The emergence of artemisinin partial resistance in the GMS necessitated urgent action and regional collaboration resulting in the Strategy for Malaria Elimination in the Greater Mekong Subregion (2015-2030), advocating for accelerated malaria elimination interventions tailored to country needs, co-ordinated and supported by the WHO Mekong malaria elimination programme. The strategy has delivered substantial reductions in malaria across all GMS countries, with a 77% reduction in malaria cases and a 97% reduction in malaria deaths across the GMS between 2012 and 2022. Notably, China was certified malaria-free by WHO in 2021. Countries' ownership and accountability have been pivotal, with each GMS country outlining its priorities in strategic and annual work plans. The development of strong networks for anti-malarial drug resistance surveillance and epidemiological surveillance was essential. Harmonization of policies and guidelines enhanced collaboration, ensuring that activities were driven by evidence. Challenges persist, particularly in Myanmar, where security concerns have limited recent progress, though an intensification and acceleration plan aims to regain momentum. Barriers to implementation can slow progress and continuing innovation is needed. Accessing mobile and migrant populations is key to addressing remaining transmission foci, requiring effective cross-border collaboration. In conclusion, the GMS has made significant progress towards malaria elimination, particularly in the east where several countries are close to P. falciparum elimination. New and persisting challenges require sustained efforts and continued close collaboration. The GMS countries have repeatedly risen to every obstacle presented, and now is the time to re-double efforts and achieve the 2030 goal of malaria elimination for the region.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Organização Mundial da Saúde , Sudeste Asiático
4.
Am J Trop Med Hyg ; 110(3): 431-435, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38350136

RESUMO

Since 2010, malaria rapid diagnostic tests (RDTs) are widely used to detect malaria. The Indian Council of Medical Research-National Institute of Malaria Research performed lot testing (LT) according to WHO procedures since 2016. Lot testing is performed to evaluate the lot-to-lot variation in performance of malaria RDTs. Four sets of positive quality control (QC) panels for P. falciparum (Pf) and P. vivax (Pv) and 10 negative panels tested RDTs. RDTs were reported as pass, failed, or deferred on the basis of WHO criteria. In the past 5 years, 275 lots containing 15,488 RDT kits for malaria diagnosis were subjected to LT. The monovalent RDTs (n = 1,216), based on either Pf histidine rich protein 2 (HRP2) or Pan-Plasmodium lactate dehydrogenase (Pan-pLDH) antigens, showed 90.4% sensitivity and 100% specificity, whereas RDTs based on HRP2 + Pan-pLDH or HRP2 + pLDH (n = 13,924) had sensitivity 95.6% and specificity 99.5%, respectively. RDTs based on PfHRP2 + Pv-pLDH + Pan-pLDH (n = 348) had 100% sensitivity and specificity. In a comparison between HRP2 + pLDH or HRP2 + Pan-pLDH to HRP2 + pLDH + Pan-pLDH RDTs, it was found that the sensitivity of PfHRP2 with Pan-pLDH RDTs (n = 2,382) was only 83%. Of the 275 lots analyzed, 15 lots of PfHRP2 with Pan-pLDH were deferred. The QC panel for Pf revealed a faint Pan band in the tested lots, which is a cause for concern. The results of deferred lots were reported to concerned government agencies. Quality-compromised RDTs may lead to an incorrect diagnosis. It is critical to have a QC system in place for effective malaria management.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Plasmodium , Humanos , Malária Falciparum/diagnóstico , Plasmodium falciparum , Testes de Diagnóstico Rápido , Testes Diagnósticos de Rotina/métodos , Malária/diagnóstico , Antígenos de Protozoários , Malária Vivax/diagnóstico , Sensibilidade e Especificidade , L-Lactato Desidrogenase , Índia , Proteínas de Protozoários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA