Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pain ; 162(5): 1416-1425, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33230005

RESUMO

ABSTRACT: The development of new analgesic drugs has been hampered by the inability to translate preclinical findings to humans. This failure is due in part to the weak connection between commonly used pain outcome measures in rodents and the clinical symptoms of chronic pain. Most rodent studies rely on the use of experimenter-evoked measures of pain and assess behavior under ethologically unnatural conditions, which limits the translational potential of preclinical research. Here, we addressed this problem by conducting an unbiased, prospective study of behavioral changes in mice within a natural homecage environment using conventional preclinical pain assays. Unexpectedly, we observed that cage-lid hanging, a species-specific elective behavior, was the only homecage behavior reliably impacted by pain assays. Noxious stimuli reduced hanging behavior in an intensity-dependent manner, and the reduction in hanging could be restored by analgesics. Finally, we developed an automated approach to assess hanging behavior. Collectively, our results indicate that the depression of hanging behavior is a novel, ethologically valid, and translationally relevant pain outcome measure in mice that could facilitate the study of pain and analgesic development.


Assuntos
Comportamento Animal , Dor , Analgésicos/uso terapêutico , Animais , Camundongos , Dor/tratamento farmacológico , Medição da Dor , Estudos Prospectivos
2.
Nat Commun ; 10(1): 1703, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979871

RESUMO

Multiple vertebrate embryonic structures such as organ primordia are composed of confluent cells. Although mechanisms that shape tissue sheets are increasingly understood, those which shape a volume of cells remain obscure. Here we show that 3D mesenchymal cell intercalations are essential to shape the mandibular arch of the mouse embryo. Using a genetically encoded vinculin tension sensor that we knock-in to the mouse genome, we show that cortical force oscillations promote these intercalations. Genetic loss- and gain-of-function approaches show that Wnt5a functions as a spatial cue to coordinate cell polarity and cytoskeletal oscillation. These processes diminish tissue rigidity and help cells to overcome the energy barrier to intercalation. YAP/TAZ and PIEZO1 serve as downstream effectors of Wnt5a-mediated actomyosin polarity and cytosolic calcium transients that orient and drive mesenchymal cell intercalations. These findings advance our understanding of how developmental pathways regulate biophysical properties and forces to shape a solid organ primordium.


Assuntos
Polaridade Celular , Citoesqueleto/fisiologia , Mandíbula/embriologia , Mandíbula/fisiologia , Proteína Wnt-5a/fisiologia , Citoesqueleto de Actina , Actomiosina/metabolismo , Animais , Cálcio/metabolismo , Ciclo Celular , Citosol/metabolismo , Elasticidade , Células Epiteliais/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Mutação , Oscilometria , Transdução de Sinais , Estresse Mecânico , Vinculina/metabolismo , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...