Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 65(22): 225004, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33284786

RESUMO

Electronic portal imaging devices (EPIDs) lend themselves to beams-eye view clinical applications, such as tumor tracking, but are limited by low contrast and detective quantum efficiency (DQE). We characterize a novel EPID prototype consisting of multiple layers and investigate its suitability for use under clinical conditions. A prototype multi-layer imager (MLI) was constructed utilizing four conventional EPID layers, each consisting of a copper plate, a Gd2O2S:Tb phosphor scintillator, and an amorphous silicon flat panel array detector. We measured the detector's response to a 6 MV photon beam with regards to modulation transfer function, noise power spectrum, DQE, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and the linearity of the detector's response to dose. Additionally, we compared MLI performance to the single top layer of the MLI and the standard Varian AS-1200 detector. Pre-clinical imaging was done on an anthropomorphic phantom, and the detector's CNR, SNR and spatial resolution were assessed in a clinical environment. Images obtained from spine and liver patient treatment deliveries were analyzed to verify CNR and SNR improvements. The MLI has a DQE(0) of 9.7%, about 5.7 times the reference AS-1200 detector. Improved noise performance largely drives the increase. CNR and SNR of clinical images improved three-fold compared to reference. A novel MLI was characterized and prepared for clinical translation. The MLI substantially improved DQE and CNR performance while maintaining the same resolution. Pre-clinical tests on an anthropomorphic phantom demonstrated improved performance as predicted theoretically. Preliminary patient data were analyzed, confirming improved CNR and SNR. Clinical applications are anticipated to include more accurate soft tissue tracking.


Assuntos
Diagnóstico por Imagem/instrumentação , Equipamentos e Provisões Elétricas , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Pesquisa Translacional Biomédica
2.
Phys Med Biol ; 65(12): 125011, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32330918

RESUMO

Tumor tracking during radiotherapy treatment can improve dose accuracy, conformity and sparing of healthy tissue. Many methods have been introduced to tackle this challenge utilizing multiple imaging modalities, including a template matching based approach using the megavoltage (MV) on-board portal imager demonstrated on 3D conformal treatments. However, the complexity of treatments is evolving with the introduction of VMAT and IMRT, and successful motion management is becoming more important due to a trend towards hypofractionation. We have developed a markerless lung tumor tracking algorithm, utilizing the electronic portal imager (EPID) of the treatment machine. The algorithm has been specifically adapted to track during complex treatment deliveries with gantry and MLC motion. The core of the algorithm is an adaptive template matching method that relies on template stability metrics and local relative orientations to perform multiple feature tracking simultaneously. Only a single image is required to initialize the algorithm and features are automatically added, modified or removed in response to the input images. This algorithm was evaluated against images collected during VMAT arcs of a dynamic thorax phantom. Dynamic phantom images were collected during radiation delivery for multiple lung SBRT breathing traces and an example patient data set. The tracking error was 1.34 mm for the phantom data and 0.68 mm for the patient data. A multi-region, markerless tracking algorithm has been developed, capable of tracking multiple features simultaneously without requiring any other a priori information. This novel approach delivers robust target localization during complex treatment delivery. The reported tracking error is similar to previous reports for 3D conformal treatments.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Radioterapia Guiada por Imagem/métodos , Radioterapia de Intensidade Modulada/métodos , Algoritmos , Automação , Humanos , Processamento de Imagem Assistida por Computador , Movimento , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...