Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 267: 11-19, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29362089

RESUMO

Pyrophosphate (PPi) is produced as byproduct of biosynthesis in the cytoplasm, nucleus, mitochondria and chloroplast, or in the tonoplast and Golgi by membrane-bound H+-pumping pyrophosphatases (PPv). Inorganic pyrophosphatases (E.C. 3.6.1.1; GO:0004427) impulse various biosynthetic reactions by recycling PPi and are essential to living cells. Soluble and membrane-bound enzymes of high specificity have evolved in different protein families and multiple pyrophosphatases are encoded in all plant genomes known to date. The soluble proteins are present in cytoplasm, extracellular space, inside chloroplasts, and perhaps inside mitochondria, nucleus or vacuoles. The cytoplasmic isoforms may compete for PPi with the PPv enzymes and how PPv and soluble activities are controlled is currently unknown, yet the cytoplasmic PPi concentration is high and fairly constant. Manipulation of the PPi metabolism impacts primary metabolism and vice versa, indicating a tight link between PPi levels and carbohydrate metabolism. These enzymes appear to play a role in germination, development and stress adaptive responses. In addition, the transgenic overexpression of PPv has been used to enhance plant tolerance to abiotic stress, but the reasons behind this tolerance are not completely understood. Finally, the relationship of PPi to stress suggest a currently unexplored link between PPi and secondary metabolism.


Assuntos
Difosfatos/metabolismo , Plantas/genética , Pirofosfatases/genética , Metabolismo Secundário/genética , Plantas/metabolismo , Pirofosfatases/metabolismo , Estresse Fisiológico
2.
Plant Sci ; 253: 229-242, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27968992

RESUMO

Pyrophosphate is a byproduct of macromolecular biosynthesis and its degradation gives a thermodynamic impulse to cell growth. Soluble inorganic pyrophosphatases (PPa) are present in all living cells, but in plants and other Eukaryotes membrane-bound H+-pumping pyrophosphatases may compete with these soluble counterparts for the substrate. In Arabidopsis thaliana there are six genes encoding for classic family I PPa isoforms, five cytoplasmic, and one considered to be organellar. Here, six transgenic stable A. thaliana lines, each expressing one of the PPa isoforms from this same plant species in fusion with a fluorescent protein, were obtained and analyzed under confocal and immunogold transmission electron microscopy. The results confirmed the cytoplasmic localization for isoforms 1-5, and showed an exclusive chloroplastic localization for isoform 6. In contrast to previous reports, the data presented here revealed a differential distribution pattern for the isoforms 1 and 5, in comparison to isoforms 2 and 3, and also the presence of isoform 4 in the intercellular space and cell wall, in addition to its presence in cytoplasm. To the best of our knowledge, this is the first report of a PPa family I protein localized in the intercellular space in plants.


Assuntos
Arabidopsis/enzimologia , Pirofosfatases/metabolismo , Sequência de Aminoácidos , Arabidopsis/ultraestrutura , Isoenzimas/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...