Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(4): 046201, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38335341

RESUMO

Atomically precise graphene nanoflakes called nanographenes have emerged as a promising platform to realize carbon magnetism. Their ground state spin configuration can be anticipated by Ovchinnikov-Lieb rules based on the mismatch of π electrons from two sublattices. While rational geometrical design achieves specific spin configurations, further direct control over the π electrons offers a desirable extension for efficient spin manipulations and potential quantum device operations. To this end, we apply a site-specific dehydrogenation using a scanning tunneling microscope tip to nanographenes deposited on a Au(111) substrate, which shows the capability of precisely tailoring the underlying π-electron system and therefore efficiently manipulating their magnetism. Through first-principles calculations and tight-binding mean-field-Hubbard modeling, we demonstrate that the dehydrogenation-induced Au-C bond formation along with the resulting hybridization between frontier π orbitals and Au substrate states effectively eliminate the unpaired π electron. Our results establish an efficient technique for controlling the magnetism of nanographenes.

2.
JACS Au ; 3(5): 1358-1364, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37234116

RESUMO

Fusion of three benzene rings in a triangular fashion gives rise to the smallest open-shell graphene fragment, the phenalenyl radical, whose π-extension leads to an entire family of non-Kekulé triangular nanographenes with high-spin ground states. Here, we report the first synthesis of unsubstituted phenalenyl on a Au(111) surface, which is achieved by combining in-solution synthesis of the hydro-precursor and on-surface activation by atomic manipulation, using the tip of a scanning tunneling microscope. Single-molecule structural and electronic characterizations confirm its open-shell S = 1/2 ground state that gives rise to Kondo screening on the Au(111) surface. In addition, we compare the phenalenyl's electronic properties with those of triangulene, the second homologue in the series, whose S = 1 ground state induces an underscreened Kondo effect. Our results set a new lower size limit in the on-surface synthesis of magnetic nanographenes that can serve as building blocks for the realization of new exotic quantum phases of matter.

3.
Chem Commun (Camb) ; 58(78): 10896-10906, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36098074

RESUMO

Triangulene is the smallest non-Kekulé graphene fragment known as Clar's hydrocarbon. Due to its open-shell electronic structure, triangulene is a promising molecular building block of carbon-based organic materials for spintronics and quantum molecular science. It comprises six benzenoid rings arranged in a triangular shape with two unpaired electrons delocalized over the entire conjugated core, making this molecule highly reactive. A triplet ground state is predicted for this hydrocarbon by Ovchinnikov's rule, or Lieb's theorem, in accord with Hund's rule. The pioneering work on triangulene was performed almost 70 years ago by Erich Clar, who attempted to prepare the pristine compound. Since then, several synthetic approaches to prepare this molecule have been exploited. The extreme reactivity of triangulene can be circumvented using on-surface techniques or by installation of sterically demanding substituents, which kinetically stabilize the diradical core against oligomerization in solution. The first two examples of a persistent derivative of triangulene were simultaneously and independently developed last year. This article presents a historical development in the synthesis of triangulene and its derivatives and outlines possible future applications in ferromagnetic materials, electrically conductive polymers or quantum computing.

4.
Chem Commun (Camb) ; 58(18): 3019-3022, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35156113

RESUMO

Triangulene, known as Clar's hydrocarbon, is a prototypical non-Kekulé diradical comprised of six benzenoid rings fused in a triangular shape. We synthesized and characterized its trimesityl derivative, illustrating that three bulky substituents installed in the centers of the zigzag edges suffice to protect all reactive positions. This work brings prospects to use triangulene and its open-shell analogs in spintronic materials via solution-phase synthesis.

5.
Angew Chem Int Ed Engl ; 60(24): 13521-13528, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33645878

RESUMO

Nucleophilic addition of carbon-centered nucleophiles to nanographene ketones represents a valuable late-stage method for the functionalization of zigzag nanographenes, but its use is rare in the chemical literature. Using two model systems, non-Kekulé triangulene-4,8-dione and Kekulé anthanthrone, we identify unexpected regioselectivities and uncover the rules that govern these reactions. Considering the large number of nanographene ketones that have been reported since the pioneering work of Eric Clar, this method enables synthesis and exploration of hitherto unknown functionalized nanographenes.

6.
Angew Chem Int Ed Engl ; 58(5): 1324-1328, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30485650

RESUMO

Spatially resolved functionalization of 2D materials is highly demanded but very challenging to achieve. The chemical patterning is typically tackled by preventing contact between the reagent and material, which brings various accompanying challenges. Photochemical transformation on the other hand inherently provides remote high spatiotemporal resolution using the cleanest reagent-a photon. Herein, we combine two competing reactions on a graphene substrate to create functionalization patterns on a micrometer scale via the Mitsunobu reaction. The mild reaction conditions allow introduction of covalently dynamic linkages, which can serve as reversible labels for surface- or graphene-enhanced Raman spectroscopy characterization of the patterns prepared. The proposed methodology thus provides a pathway for local introduction of arbitrary functional groups on graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...