Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1265: 227-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25634279

RESUMO

Genetic transformation of mitochondria in multicellular eukaryotes has remained inaccessible, hindering fundamental investigations and applications to gene therapy or biotechnology. In this context, we have developed a strategy to target nuclear transgene-encoded RNAs into mitochondria in plants. We describe here mitochondrial targeting of trans-cleaving ribozymes destined to knockdown organelle RNAs for regulation studies and inverse genetics and biotechnological purposes. The design and functional assessment of chimeric RNAs combining the ribozyme and the mitochondrial shuttle are detailed, followed by all procedures to prepare constructs for in vivo expression, generate stable plant transformants, and establish target RNA knockdown in mitochondria.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Catalítico/genética , Expressão Gênica , Técnicas de Silenciamento de Genes , Células Vegetais , Interferência de RNA , Transporte de RNA , RNA Catalítico/metabolismo , Transformação Genética , Transgenes
2.
Nucleic Acids Res ; 39(21): 9262-74, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21768127

RESUMO

With the expansion of the RNA world, antisense strategies have become widespread to manipulate nuclear gene expression but organelle genetic systems have remained aside. The present work opens the field to mitochondria. We demonstrate that customized RNAs expressed from a nuclear transgene and driven by a transfer RNA-like (tRNA-like) moiety are taken up by mitochondria in plant cells. The process appears to follow the natural tRNA import specificity, suggesting that translocation indeed occurs through the regular tRNA uptake pathway. Upon validation of the strategy with a reporter sequence, we developed a chimeric catalytic RNA composed of a specially designed trans-cleaving hammerhead ribozyme and a tRNA mimic. Organelle import of the chimeric ribozyme and specific target cleavage within mitochondria were demonstrated in transgenic tobacco cell cultures and Arabidopsis thaliana plants, providing the first directed knockdown of a mitochondrial RNA in a multicellular eukaryote. Further observations point to mitochondrial messenger RNA control mechanisms related to the plant developmental stage and culture conditions. Transformation of mitochondria is only accessible in yeast and in the unicellular alga Chlamydomonas. Based on the widespread tRNA import pathway, our data thus make a breakthrough for direct investigation and manipulation of mitochondrial genetics.


Assuntos
Mitocôndrias/metabolismo , RNA Catalítico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sequência de Bases , Engenharia Genética , Dados de Sequência Molecular , RNA/metabolismo , Transporte de RNA , RNA Catalítico/química , RNA Mitocondrial , RNA de Transferência/química , RNA de Transferência/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
3.
J Virol ; 79(15): 9991-10002, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16014959

RESUMO

During infection, Beet necrotic yellow vein virus (BNYVV) particles localize transiently to the cytosolic surfaces of mitochondria. To understand the molecular basis and significance of this localization, we analyzed the targeting and membrane insertion properties of the viral proteins. ORF1 of BNYVV RNA-2 encodes the 21-kDa major coat protein, while ORF2 codes for a 75-kDa minor coat protein (P75) by readthrough of the ORF1 stop codon. Bioinformatic analysis highlighted a putative mitochondrial targeting sequence (MTS) as well as a major (TM1) and two minor (TM3 and TM4) transmembrane regions in the N-terminal part of the P75 readthrough domain. Deletion and gain-of-function analyses based on the localization of green fluorescent protein (GFP) fusions showed that the MTS was able to direct a reporter protein to mitochondria but that the protein was not persistently anchored to the organelles. GFP fused either to MTS and TM1 or to MTS and TM3-TM4 efficiently and specifically associated with mitochondria in vivo. The actual role of the individual domains in the interaction with the mitochondria seemed to be determined by the folding of P75. Anchoring assays to the outer membranes of isolated mitochondria, together with in vivo data, suggest that the TM3-TM4 domain is the membrane anchor in the context of full-length P75. All of the domains involved in mitochondrial targeting and anchoring were also indispensable for encapsidation, suggesting that the assembly of BNYVV particles occurs on mitochondria. Further data show that virions are subsequently released from mitochondria and accumulate in the cytosol.


Assuntos
Doenças das Plantas/virologia , Vírus de Plantas/metabolismo , Vírus de RNA/metabolismo , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Biologia Computacional , Mitocôndrias/virologia , Peso Molecular , Estrutura Terciária de Proteína , Nicotiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...