Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(29): 35105-35112, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34259497

RESUMO

Low turn-on (knee) voltage (∼0.3 V) Schottky-diode behavior of a four-layer (4L) MoS2/GaN junction is achieved by optimizing the in situ interface preparation of the GaN substrate prior to MoS2 overlayer growth in a vacuum system using metallic molybdenum and hydrogen sulfide gas as precursors. The process leads to a clean nitrogen-terminated GaN surface that bonds well to the MoS2 film revealing a 2 × 2 reconstruction at the interface observed in low-energy electron diffraction (LEED). Atomic force microscopy and X-ray photoelectron spectroscopy provide clear images of the GaN terraces through the MoS2 overlayer confirming close adhesion and absence of oxygen and other contaminants. Density functional theory calculations predict the formation of the 2 × 2 superstructure at a clean interface. Transport measurements show diode behavior at an on/off ratio of ∼105 for ±1 V with a forward direction for the positive voltage applied to the MoS2 layer. Combining transport and photoelectron spectroscopy measurements with theory, we deduce a Fermi-level position in the MoS2 gap consistent with interface charge transfer from MoS2 to the substrate. The high performance of the MoS2/Gan diode highlights the technological potential of devices based on GaN/MoS2 interfaces.

2.
ACS Appl Mater Interfaces ; 12(33): 37305-37312, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32702966

RESUMO

Atomic vacancies related to structural disorder and doping variation influence carrier transport in monolayer transition-metal dichalcogenide devices. Here, we investigate the effect of hydrogen plasma exposure (HPE) on monolayer MoS2 field-effect transistors (FETs). We observe that a 1% increase in sulfur vacancy after HPE results in incremental 0.06 eV of the Schottky barrier. Short-range scattering from the sulfur vacancies reduces the carrier mobility of monolayer MoS2 by 2 orders of magnitude. Despite the defects and grain boundaries formed during the chemical vapor deposition and transferring process, the surface desulfurization induced by the proton exposure and thermally accelerated oxidation can be blocked by monolayer graphene cladding with a van der Waals contact distance of 2.5 Å. The material-level study indicates a promising route for a low-cost and robust fabrication of smart sensor circuits on a monolithic MoS2 wafer, where the bare MoS2 FETs can serve as proton sensors, with their electronic readout processed by a logic circuit of graphene-protected pristine FETs with a high on/off ratio.

3.
Nanotechnology ; 31(30): 30LT01, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32240999

RESUMO

We report the results of Brillouin-Mandelstam spectroscopy and Mueller matrix spectroscopic ellipsometry of the nanoscale 'pillar with the hat' periodic silicon structures, revealing intriguing phononic and photonic-phoxonic-properties. It has been theoretically shown that periodic structures with properly tuned dimensions can act simultaneously as phononic and photonic crystals, strongly affecting the light-matter interactions. Acoustic phonon states can be tuned by external boundaries, either as a result of phonon confinement effects in individual nanostructures, or as a result of artificially induced external periodicity, as in the phononic crystals. The shape of the nanoscale pillar array was engineered to ensure the interplay of both effects. The Brillouin-Mandelstam spectroscopy data indicated strong flattening of the acoustic phonon dispersion in the frequency range from 2 GHz to 20 GHz and the phonon wave vector extending to the higher-order Brillouin zones. The specifics of the phonon dispersion dependence on the pillar arrays' orientation suggest the presence of both periodic modulation and spatial localization effects for the acoustic phonons. The ellipsometry data reveal a distinct scatter pattern of four-fold symmetry due to nanoscale periodicity of the pillar arrays. Our results confirm the dual functionality of the nanostructured shape-engineered structure and indicate a possible new direction for fine-tuning the light-matter interaction in the next generation of photonic, optoelectronic, and phononic devices.

4.
ACS Appl Mater Interfaces ; 10(39): 33457-33463, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30192131

RESUMO

Wafer-scale MoS2 growth at arbitrary integer layer number is demonstrated by a technique based on the decomposition of carbon disulfide on a hot molybdenum filament, which yields volatile MoS x precursors that precipitate onto a heated wafer substrate. Colorimetric control of the growth process allows precise targeting of any integer layer number. The method is inherently free of particulate contamination, uses inexpensive reactants without the pyrophoricity common to metal-organic precursors, and does not rely on particular gas-flow profiles. Raman mapping and photoluminescence mapping, as well as imaging by electron microscopy, confirm the layer homogeneity and crystalline quality of the resultant material. Electrical characterization revealed microampere output current, outstanding device-to-device consistency, and exceptionally low noise level unparalleled even by the exfoliated material, while other transport properties are obscured by high-resistance contacts typical to MoS2 devices.

5.
ACS Nano ; 11(1): 900-905, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27992719

RESUMO

Chemical vapor deposition allows the preparation of few-layer films of MoTe2 in three distinct structural phases depending on the growth quench temperature: 2H, 1T', and 1T. We present experimental and computed Raman spectra for each of the phases and utilize transport measurements to explore the properties of the 1T MoTe2 phase. Density functional theory modeling predicts a (semi-)metallic character. Our experimental 1T films affirm the former, show facile µA-scale source-drain currents, and increase in conductivity with temperature, different from the 1T' phase. Variation of the growth method allows the formation of hybrid films of mixed phases that exhibit susceptibility to gating and significantly increased conductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA