Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 46(2): 348-357, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36601751

RESUMO

Mucopolysaccharidosis type I (MPS I) is a rare lysosomal storage disease caused by α-L-iduronidase enzyme deficiency, resulting in glycosaminoglycan (GAG) accumulation in various cell types, including ocular tissues. Ocular manifestations in humans are common with significant pathological changes including corneal opacification, retinopathy, optic nerve swelling and atrophy, and glaucoma. Available treatments for MPS I are suboptimal and there is limited to no effect in treating the ocular disease. The goal of this study was to characterize the clinical and pathological features of ocular disease in a line of MPS I affected dogs, including changes not previously reported. A total of 22 dogs were studied; 12 MPS I were affected and 10 were unaffected. A subset of each underwent complete ophthalmic examination including slit lamp biomicroscopy, indirect ophthalmoscopy, rebound tonometry, and ultrasonic pachymetry. Globes were evaluated microscopically for morphological changes and GAG accumulation. Clinical corneal abnormalities in affected dogs included edema, neovascularization, fibrosis, and marked stromal thickening. Intraocular pressures were within reference interval for affected and unaffected dogs. Microscopically, vacuolated cells containing alcian blue positive inclusions were detected within the corneal stroma, iris, ciliary body, sclera, and optic nerve meninges of affected dogs. Ganglioside accumulation was identified by luxol fast blue staining in rare retinal ganglion cells. Increased lysosomal integral membrane protein-2 expression was demonstrated within the retina of affected animals when compared to unaffected controls. Results of this study further characterize ocular pathology in the canine model of MPS I and provide foundational data for future therapeutic efficacy studies.


Assuntos
Oftalmopatias , Doenças por Armazenamento dos Lisossomos , Mucopolissacaridose I , Doenças Retinianas , Humanos , Cães , Animais , Mucopolissacaridose I/terapia , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Glicosaminoglicanos/metabolismo , Iduronidase/uso terapêutico
2.
J Pharmacol Exp Ther ; 382(3): 277-286, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717448

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB; Sanfilippo syndrome B; OMIM #252920) is a lethal, pediatric, neuropathic, autosomal recessive, and lysosomal storage disease with no approved therapy. Patients are deficient in the activity of N-acetyl-alpha-glucosaminidase (NAGLU; EC 3.2.150), necessary for normal lysosomal degradation of the glycosaminoglycan heparan sulfate (HS). Tralesinidase alfa (TA), a fusion protein comprised of recombinant human NAGLU and a modified human insulin-like growth factor 2, is in development as an enzyme replacement therapy that is administered via intracerebroventricular (ICV) infusion, thus circumventing the blood brain barrier. Previous studies have confirmed ICV infusion results in widespread distribution of TA throughout the brains of mice and nonhuman primates. We assessed the long-term tolerability, pharmacology, and clinical efficacy of TA in a canine model of MPS IIIB over a 20-month study. Long-term administration of TA was well tolerated as compared with administration of vehicle. TA was widely distributed across brain regions, which was confirmed in a follow-up 8-week pharmacokinetic/pharmacodynamic study. MPS IIIB dogs treated for up to 20 months had near-normal levels of HS and nonreducing ends of HS in cerebrospinal fluid and central nervous system (CNS) tissues. TA-treated MPS IIIB dogs performed better on cognitive tests and had improved CNS pathology and decreased cerebellar volume loss relative to vehicle-treated MPS IIIB dogs. These findings demonstrate the ability of TA to prevent or limit the biochemical, pathologic, and cognitive manifestations of canine MPS IIIB disease, thus providing support of its potential long-term tolerability and efficacy in MPS IIIB subjects. SIGNIFICANCE STATEMENT: This work illustrates the efficacy and tolerability of tralesinidase alfa as a potential therapeutic for patients with mucopolysaccharidosis type IIIB (MPS IIIB) by documenting that administration to the central nervous system of MPS IIIB dogs prevents the accumulation of disease-associated glycosaminoglycans in lysosomes, hepatomegaly, cerebellar atrophy, and cognitive decline.


Assuntos
Mucopolissacaridose III , Animais , Encéfalo/metabolismo , Criança , Modelos Animais de Doenças , Cães , Terapia de Reposição de Enzimas , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/líquido cefalorraquidiano , Heparitina Sulfato/uso terapêutico , Humanos , Mucopolissacaridose III/tratamento farmacológico , Mucopolissacaridose III/patologia
3.
Vet Pathol ; 58(1): 205-222, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205707

RESUMO

Mucopolysaccharidosis (MPS) IIIB is a neuropathic lysosomal storage disease characterized by the deficient activity of a lysosomal enzyme obligate for the degradation of the glycosaminoglycan (GAG) heparan sulfate (HS). The pathogenesis of neurodegeneration in MPS IIIB is incompletely understood. Large animal models are attractive for pathogenesis and therapeutic studies due to their larger size, outbred genetics, longer lifespan, and naturally occurring MPS IIIB disease. However, the temporospatial development of neuropathologic changes has not been reported for canine MPS IIIB. Here we describe lesions in 8 brain regions, cervical spinal cord, and dorsal root ganglion (DRG) in a canine model of MPS IIIB that includes dogs aged from 2 to 26 months of age. Pathological changes in the brain included early microscopic vacuolation of glial cells initially observed at 2 months, and vacuolation of neurons initially observed at 10 months. Inclusions within affected cells variably stained positively with PAS and LFB stains. Quantitative immunohistochemistry demonstrated increased glial expression of GFAP and Iba1 in dogs with MPS IIIB compared to age-matched controls at all time points, suggesting neuroinflammation occurs early in disease. Loss of Purkinje cells was initially observed at 10 months and was pronounced in 18- and 26-month-old dogs with MPS IIIB. Our results support the dog as a replicative model of MPS IIIB neurologic lesions and detail the pathologic and neuroinflammatory changes in the spinal cord and DRG of MPS IIIB-affected dogs.


Assuntos
Doenças do Cão , Mucopolissacaridoses , Mucopolissacaridose III , Animais , Encéfalo , Modelos Animais de Doenças , Cães , Heparitina Sulfato , Mucopolissacaridoses/veterinária , Mucopolissacaridose III/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...