Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631765

RESUMO

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Assuntos
Doença de Pick , Tauopatias , Masculino , Humanos , Feminino , Proteínas tau/metabolismo , Doença de Pick/genética , Haplótipos , Estudos de Associação Genética
2.
medRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37905059

RESUMO

The PINK1-PRKN pathway mediates a critical quality control to maintain mitochondrial health and function. Together the kinase-ligase pair identifies and decorate damaged mitochondria with phosphorylated ubiquitin (p-S65-Ub). This selective label serves as the mitophagy tag and facilitates their degradation via autophagy-lysosome system. While complete loss of PINK1 or PRKN function causes early-onset Parkinson disease, much broader mitophagy impairments are emerging across neurodegenerative disorders. We previously found age- and disease-dependent accumulation of p-S65-Ub signal in the hippocampus of autopsy brains with Lewy body disease (LBD). However, the contribution of genetic variation to mitochondrial damage and p-S65-Ub levels remains unknown in LBD cases. To identify novel regulators of PINK1-PRKN mitophagy in LBD, we performed an unbiased genome-wide association study of hippocampal p-S65-Ub level with 1,012 autopsy confirmed LBD samples. Using an established, mostly automated workflow, hippocampal sections were immunostained for p-S65-Ub, scanned, and quantified with unbiased algorithms. Functional validation of the significant hit was performed in animal model and human induced pluripotent stem cells (hiPSCs). We identified a strong association with p-S65-Ub for APOE4 (rs429358; ß : 0.50, 95% CI: 0.41 to 0.69; p =8.67x10 -25 ) and a genome-wide significant association for ZMIZ1 (rs6480922; ß : -0.33, 95% CI: -0.45 to -0.22; p =1.42x10 -8 ). The increased p-S65-Ub levels in APOE4 -carrier may be mediated by both co-pathology-dependent and -independent mechanisms, which was confirmed in Apoe-targeted replacement mice and hiPSC-derived astrocytes. Intriguingly, ZMIZ1 rs6480922 also significantly associated with increased brain weight and reduced neuropathological burden indicating a potential role as a resilience factor. Our findings nominate novel mitophagy regulators in LBD brain ( ZMIZ1 locus) and highlight a strong association of APOE4 with mitophagy alteration. With APOE4 being the strongest known risk factor for clinical Alzheimer's disease and dementia with Lewy bodies, our findings suggest a common mechanistic link underscoring the importance of mitochondrial quality control.

3.
medRxiv ; 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37163045

RESUMO

Background: Pick's disease (PiD) is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. PiD is pathologically defined by argyrophilic inclusion Pick bodies and ballooned neurons in the frontal and temporal brain lobes. PiD is characterised by the presence of Pick bodies which are formed from aggregated, hyperphosphorylated, 3-repeat tau proteins, encoded by the MAPT gene. The MAPT H2 haplotype has consistently been associated with a decreased disease risk of the 4-repeat tauopathies of progressive supranuclear palsy and corticobasal degeneration, however its role in susceptibility to PiD is unclear. The primary aim of this study was to evaluate the association between MAPT H2 and risk of PiD. Methods: We established the Pick's disease International Consortium (PIC) and collected 338 (60.7% male) pathologically confirmed PiD brains from 39 sites worldwide. 1,312 neurologically healthy clinical controls were recruited from Mayo Clinic Jacksonville, FL (N=881) or Rochester, MN (N=431). For the primary analysis, subjects were directly genotyped for MAPT H1-H2 haplotype-defining variant rs8070723. In secondary analysis, we genotyped and constructed the six-variant MAPT H1 subhaplotypes (rs1467967, rs242557, rs3785883, rs2471738, rs8070723, and rs7521). Findings: Our primary analysis found that the MAPT H2 haplotype was associated with increased risk of PiD (OR: 1.35, 95% CI: 1.12-1.64 P=0.002). In secondary analysis involving H1 subhaplotypes, a protective association with PiD was observed for the H1f haplotype (0.0% vs. 1.2%, P=0.049), with a similar trend noted for H1b (OR: 0.76, 95% CI: 0.58-1.00, P=0.051). The 4-repeat tauopathy risk haplotype MAPT H1c was not associated with PiD susceptibility (OR: 0.93, 95% CI: 0.70-1.25, P=0.65). Interpretation: The PIC represents the first opportunity to perform relatively large-scale studies to enhance our understanding of the pathobiology of PiD. This study demonstrates that in contrast to its protective role in 4R tauopathies, the MAPT H2 haplotype is associated with an increased risk of PiD. This finding is critical in directing isoform-related therapeutics for tauopathies.

4.
Acta Neuropathol Commun ; 10(1): 103, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836284

RESUMO

Dementia with Lewy bodies (DLB) is clinically diagnosed when patients develop dementia less than a year after parkinsonism onset. Age is the primary risk factor for DLB and mitochondrial health influences ageing through effective oxidative phosphorylation (OXPHOS). Patterns of stable polymorphisms in the mitochondrial genome (mtDNA) alter OXPHOS efficiency and define individuals to specific mtDNA haplogroups. This study investigates if mtDNA haplogroup background affects clinical DLB risk and neuropathological disease severity. 360 clinical DLB cases, 446 neuropathologically confirmed Lewy body disease (LBD) cases with a high likelihood of having DLB (LBD-hDLB), and 910 neurologically normal controls had European mtDNA haplogroups defined using Agena Biosciences MassARRAY iPlex technology. 39 unique mtDNA variants were genotyped and mtDNA haplogroups were assigned to mitochondrial phylogeny. Striatal dopaminergic degeneration, neuronal loss, and Lewy body counts were also assessed in different brain regions in LBD-hDLB cases. Logistic regression models adjusted for age and sex were used to assess associations between mtDNA haplogroups and risk of DLB or LBD-hDLB versus controls in a case-control analysis. Additional appropriate regression models, adjusted for age at death and sex, assessed associations of haplogroups with each different neuropathological outcome measure. No mtDNA haplogroups were significantly associated with DLB or LBD-hDLB risk after Bonferroni correction.Haplogroup H suggests a nominally significant reduced risk of DLB (OR=0.61, P=0.006) but no association of LBD-hDLB (OR=0.87, P=0.34). The haplogroup H observation in DLB was consistent after additionally adjusting for the number of APOE ε4 alleles (OR=0.59, P=0.004). Haplogroup H also showed a suggestive association with reduced ventrolateral substantia nigra neuronal loss (OR=0.44, P=0.033). Mitochondrial haplogroup H may be protective against DLB risk and neuronal loss in substantia nigra regions in LBD-hDLB cases but further validation is warranted.


Assuntos
Genoma Mitocondrial , Doença por Corpos de Lewy , Genômica , Humanos , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Substância Negra/patologia
5.
Neurology ; 96(13): e1755-e1760, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33568542

RESUMO

OBJECTIVE: To determine whether stable polymorphisms that define mitochondrial haplogroups in mitochondrial DNA (mtDNA) are associated with Pick disease risk, we genotyped 52 pathologically confirmed cases of Pick disease and 910 neurologically healthy controls and performed case-control association analysis. METHODS: Fifty-two pathologically confirmed cases of Pick disease from Mayo Clinic Florida (n = 38) and the University of Pennsylvania (n = 14) and 910 neurologically healthy controls collected from Mayo Clinic Florida were genotyped for unique mtDNA haplogroup-defining variants. Mitochondrial haplogroups were determined, and in a case-control analysis, associations of mtDNA haplogroups with risk of Pick disease were evaluated with logistic regression models that were adjusted for age and sex. RESULTS: No individual mtDNA haplogroups or superhaplogroups were significantly associated with risk of Pick disease after adjustment for multiple testing (p < 0.0021, considered significant). However, nominally significant (p < 0.05) associations toward an increased risk of Pick disease were observed for mtDNA haplogroup W (5.8% cases vs 1.6% controls, odds ratio [OR] 4.78, p = 0.020) and subhaplogroup H4 (5.8% cases vs 1.2% controls, OR 4.82, p = 0.021). CONCLUSION: Our findings indicate that mtDNA variation is not a disease driver but may influence disease susceptibility. Ongoing genetic assessments in larger cohorts of Pick disease are currently underway.


Assuntos
DNA Mitocondrial/genética , Genoma Mitocondrial/genética , Doença de Pick/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Variação Genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade
6.
Neurosci Lett ; 749: 135723, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33600908

RESUMO

Multiple system atrophy (MSA) is a rare sporadic, progressive parkinsonism characterised by autonomic dysfunction. A recent genome-wide association study reported an association at the Elongation of Very Long Fatty Acids Protein 7 (ELOVL7) locus with MSA risk. In the current study four independent and unrelated cohorts were assessed, consisting of pathologically confirmed MSA cases, Parkinson's disease (PD) cases, and two unrelated, healthy control groups. All exons of ELOVL7 were sequenced in pathologically confirmed MSA cases; data for PPMI samples and Biobank controls was extracted from whole genome sequence. Coding variants in ELOVL7 were extremely rare, and we observed no significant association of ELOVL7 coding variants with risk of MSA.


Assuntos
Elongases de Ácidos Graxos/genética , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , alfa-Sinucleína/genética
7.
Clin Auton Res ; 31(1): 117-125, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33502644

RESUMO

PURPOSE: Investigate single nucleotide variants and short tandem repeats in 39 genes related to spinocerebellar ataxia in clinical and pathologically defined cohorts of multiple system atrophy. METHODS: Exome sequencing was conducted in 28 clinical multiple system atrophy patients to identify single nucleotide variants in spinocerebellar ataxia-related genes. Novel variants were validated in two independent disease cohorts: 86 clinically diagnosed multiple system atrophy patients and 166 pathological multiple system atrophy cases. Expanded repeat alleles in spinocerebellar ataxia genes were evaluated in 36 clinically diagnosed multiple system atrophy patients, and CAG/CAA repeats in TATA-Box Binding Protein (TBP, causative of SCA17) were screened in 216 clinical and pathological multiple system atrophy patients and 346 controls. RESULTS: No known pathogenic spinocerebellar ataxia single nucleotide variants or pathogenic range expanded repeat alleles of ATXN1, ATXN2, ATXN3, CACNA1A, AXTN7, ATXN8OS, ATXN10, PPP2R2B, and TBP were detected in any clinical multiple system atrophy patients. However, four novel variants were identified in four spinocerebellar ataxia-related genes across three multiple system atrophy patients. Additionally, four multiple system atrophy patients (1.6%) and one control (0.3%) carried an intermediate length 41 TBP CAG/CAA repeat allele (OR = 4.11, P = 0.21). There was a significant association between the occurrence of a repeat length of longer alleles (> 38 repeats) and an increased risk of multiple system atrophy (OR = 1.64, P = 0.03). CONCLUSION: Occurrence of TBP CAG/CAA repeat length of longer alleles (> 38 repeats) is significantly associated with increased multiple system atrophy risk. This discovery warrants further investigation and supports a possible genetic overlap of multiple system atrophy with SCA17.


Assuntos
Atrofia de Múltiplos Sistemas , Ataxias Espinocerebelares , Ataxina-10 , Humanos , Atrofia de Múltiplos Sistemas/genética , Mutação , Ataxias Espinocerebelares/genética , Proteína de Ligação a TATA-Box/genética , Expansão das Repetições de Trinucleotídeos
8.
Parkinsonism Relat Disord ; 83: 22-30, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33454605

RESUMO

INTRODUCTION: Genome-wide association studies (GWAS) have confirmed the leucine-rich repeat kinase 2 (LRRK2) gene as a susceptibility locus for idiopathic Parkinson's disease (PD) in Caucasians. Though the rs1491942 and rs76904798 variants have shown the strongest associations, the causal variant(s) remains unresolved. Therefore, the aim of this study was to identify variants that may be driving the LRRK2 GWAS signal by sequencing the entire LRRK2 gene in Caucasian PD patients and controls. METHODS: A discovery series (287 PD patients, 294 controls) and replication series (362 PD patients, 168 controls) were included. The entire LRRK2 gene as well as 10 Kb upstream/downstream was sequenced. Candidate potential causal variants were considered to be those that (a) were in at least weak linkage disequilibrium with the two GWAS-nominated variants (rs1491942 and rs76904798), and (b) displayed an association odds ratio (OR) that is stronger than the two GWAS variants. RESULTS: Thirty-four candidate variants (all intronic/intergenic) that may drive the LRRK2 PD GWAS signal were identified in the discovery series. However, examination of the replication series for these variants did not reveal any with a consistently stronger OR than both PD GWAS variants. Evaluation of public databases to determine which candidate variants are most likely to have a direct functional effect on LRRK2 expression was inconclusive. CONCLUSION: Though our findings provide novel insights into the LRRK2 GWAS association, a clear causal variant was not identified. The identified candidate variants can form the basis for future experiments and functional studies that can more definitively assess causal LRRK2 variants.


Assuntos
Estudo de Associação Genômica Ampla , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , População Branca/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência de DNA
9.
Lancet Neurol ; 20(2): 107-116, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33341150

RESUMO

BACKGROUND: The genetic basis of variation in the progression of primary tauopathies has not been determined. We aimed to identify genetic determinants of survival in progressive supranuclear palsy (PSP). METHODS: In stage one of this two stage genome-wide association study (GWAS), we included individuals with PSP, diagnosed according to pathological and clinical criteria, from two separate cohorts: the 2011 PSP GWAS cohort, from brain banks based at the Mayo Clinic (Jacksonville, FL, USA) and in Munich (Germany), and the University College London PSP cohort, from brain banks and the PROSPECT study, a UK-wide longitudinal study of patients with atypical parkinsonian syndromes. Individuals were included if they had clinical data available on sex, age at motor symptom onset, disease duration (from motor symptom onset to death or to the date of censoring, Dec 1, 2019, if individuals were alive), and PSP phenotype (with reference to the 2017 Movement Disorder Society criteria). Genotype data were used to do a survival GWAS using a Cox proportional hazards model. In stage two, data from additional individuals from the Mayo Clinic brain bank, which were obtained after the 2011 PSP GWAS, were used for a pooled analysis. We assessed the expression quantitative trait loci (eQTL) profile of variants that passed genome-wide significance in our GWAS using the Functional Mapping and Annotation of GWAS platform, and did colocalisation analyses using the eQTLGen and PsychENCODE datasets. FINDINGS: Data were collected and analysed between Aug 1, 2016, and Feb 1, 2020. Data were available for 1001 individuals of white European ancestry with PSP in stage one. We found a genome-wide significant association with survival at chromosome 12 (lead single nucleotide polymorphism rs2242367, p=7·5 × 10-10, hazard ratio 1·42 [95% CI 1·22-1·67]). rs2242367 was associated with survival in the individuals added in stage two (n=238; p=0·049, 1·22 [1·00-1·48]) and in the pooled analysis of both stages (n=1239; p=1·3 × 10-10, 1·37 [1·25-1·51]). An eQTL database screen revealed that rs2242367 is associated with increased expression of LRRK2 and two long intergenic non-coding RNAs (lncRNAs), LINC02555 and AC079630.4, in whole blood. Although we did not detect a colocalisation signal for LRRK2, analysis of the PSP survival signal and eQTLs for LINC02555 in the eQTLGen blood dataset revealed a posterior probability of hypothesis 4 of 0·77, suggesting colocalisation due to a single shared causal variant. INTERPRETATION: Genetic variation at the LRRK2 locus was associated with survival in PSP. The mechanism of this association might be through a lncRNA-regulated effect on LRRK2 expression because LINC02555 has previously been shown to regulate LRRK2 expression. LRRK2 has been associated with sporadic and familial forms of Parkinson's disease, and our finding suggests a genetic overlap with PSP. Further functional studies will be important to assess the potential of LRRK2 modulation as a disease-modifying therapy for PSP and related tauopathies. FUNDING: PSP Association, CBD Solutions, Medical Research Council (UK).


Assuntos
Estudo de Associação Genômica Ampla , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/mortalidade , Adulto , Idade de Início , Idoso , Cromossomos Humanos Par 12/genética , Bases de Dados Genéticas , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Estimativa de Kaplan-Meier , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Análise de Sobrevida , População Branca
10.
Acta Neuropathol Commun ; 8(1): 218, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287913

RESUMO

The microtubule-associated protein tau (MAPT) H1 haplotype is the strongest genetic risk factor for corticobasal degeneration (CBD). However, the specific H1 subhaplotype association is not well defined, and it is not clear whether any MAPT haplotypes influence severity of tau pathology or clinical presentation in CBD. Therefore, in the current study we examined 230 neuropathologically confirmed CBD cases and 1312 controls in order to assess associations of MAPT haplotypes with risk of CBD, severity of tau pathology (measured as semi-quantitative scores for coiled bodies, neurofibrillary tangles, astrocytic plaques, and neuropil threads), age of CBD onset, and disease duration. After correcting for multiple testing (P < 0.0026 considered as significant), we confirmed the strong association between the MAPT H2 haplotype and decreased risk of CBD (Odds ratio = 0.26, P = 2 × 10-12), and also observed a novel association between the H1d subhaplotype and an increased CBD risk (Odds ratio = 1.76, P = 0.002). Additionally, although not statistically significant after correcting for multiple testing, the H1c haplotype was associated with a higher risk of CBD (Odds ratio = 1.49, P = 0.009). No MAPT haplotypes were significantly associated with any tau pathology measures, age of CBD onset, or disease duration. Though replication will be important and there is potential that population stratification could have influenced our findings, these results suggest that several MAPT H1 subhaplotypes are primarily responsible for the strong association between MAPT H1 and risk of CBD, but that H1 subhaplotypes are unlikely to play a major role in driving tau pathology or clinical features. Our findings also indicate that similarities in MAPT haplotype risk-factor profile exist between CBD and the related tauopathy progressive supranuclear palsy, with H2, H1d, and H1c displaying associations with both diseases.


Assuntos
Encéfalo/patologia , Tauopatias/genética , Proteínas tau/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Astrócitos/patologia , Estudos de Casos e Controles , Corpos Enovelados/patologia , Feminino , Predisposição Genética para Doença , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/patologia , Filamentos do Neurópilo/patologia , Índice de Gravidade de Doença , Tauopatias/patologia , Tauopatias/fisiopatologia
11.
Parkinsonism Relat Disord ; 81: 200-204, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33189969

RESUMO

INTRODUCTION: Multiple system atrophy (MSA) is a rare, sporadic, and progressive neurodegenerative disease which is characterized neuropathologically by alpha-synuclein aggregates in oligodendroglia, and clinically by parkinsonism, ataxia, and autonomic dysfunction. Mitochondrial health influences neurodegeneration and defects in mitochondria, particularly in oxidative phosphorylation, are reported in MSA. Mitochondrial DNA (mtDNA) codes for 13 critical OXPHOS proteins, however no study has investigated if mtDNA variation, in the form of mitochondrial haplogroups, influences MSA risk. Therefore, in this study we investigated the association of mtDNA haplogroups with MSA risk in a case-control manner. METHODS: 176 pathologically confirmed MSA cases and 910 neurologically healthy controls from Mayo Clinic Jacksonville were genotyped for 39 unique mtDNA variants using Agena Biosciences MassARRAY iPlex technology. Mitochondrial haplogroups were assigned to mitochondrial phylogeny, and logistic regression models that were adjusted for age and sex were used to assess associations between mitochondrial haplogroups and risk of MSA. RESULTS: After adjusting for multiple testing (P<0.0019 considered significant), no mitochondrial haplogroups were significantly associated with MSA risk. However, several nominally significant (P<0.05) associations were observed; haplogroup I was associated with a decreased risk of MSA (OR=0.09, P=0.021), while an increased risk of MSA was observed for haplogroups H3 (OR=2.43, P=0.017) and T1 and T2 (OR=2.04, P=0.007). CONCLUSION: This study investigated whether population-specific mtDNA variation is associated with risk of MSA, and our nominally significant findings suggest mitochondrial haplogroup background may influence MSA risk. Validation of these findings and additional meta-analytic studies will be important.


Assuntos
DNA Mitocondrial/genética , Predisposição Genética para Doença/genética , Atrofia de Múltiplos Sistemas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Acta Neuropathol Commun ; 8(1): 162, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943110

RESUMO

Mitochondrial health is important in ageing and dysfunctional oxidative phosphorylation (OXPHOS) accelerates ageing and influences neurodegeneration. Mitochondrial DNA (mtDNA) codes for vital OXPHOS subunits and mtDNA background has been associated with neurodegeneration; however, no study has characterised mtDNA variation in Progressive supranuclear palsy (PSP) or Corticobasal degeneration (CBD) risk or pathogenesis. In this case-control study, 910 (42.6% male) neurologically-healthy controls, 1042 (54.1% male) pathologically-confirmed PSP cases, and 171 (52.0% male) pathologically-confirmed CBD cases were assessed to determine how stable mtDNA polymorphisms, in the form of mtDNA haplogroups, were associated with risk of PSP, risk of CBD, age of PSP onset, PSP disease duration, and neuropathological tau pathology measures for neurofibrillary tangles (NFT), neuropil threads (NT), tufted astrocytes (TA), astrocytic plaques (AP), and oligodendroglial coiled bodies (CB). 764 PSP cases and 150 CBD cases had quantitative tau pathology scores. mtDNA was genotyped for 39 unique SNPs using Agena Bioscience iPlex technologies and mitochondrial haplogroups were defined to mitochondrial phylogeny. After adjustment for multiple testing, we observed an association with risk of CBD for mtDNA sub-haplogroup H4 (OR = 4.51, P = 0.001) and the HV/HV0a haplogroup was associated with a decreased severity of NT tau pathology in PSP cases (P = 0.0023). Our study reports that mitochondrial genomic background may be associated with risk of CBD and may be influencing tau pathology measures in PSP. Replication of these findings will be important.


Assuntos
Encéfalo/patologia , DNA Mitocondrial/genética , Doenças Neurodegenerativas/genética , Paralisia Supranuclear Progressiva/genética , Proteínas tau , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Fosforilação Oxidativa , Polimorfismo de Nucleotídeo Único , Paralisia Supranuclear Progressiva/patologia
13.
Parkinsonism Relat Disord ; 78: 138-144, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32829096

RESUMO

INTRODUCTION: The microtubule-associated protein tau (MAPT) gene is considered a strong genetic risk factor for Parkinson's disease (PD) in Caucasians. MAPT is located within an inversion region of high linkage disequilibrium designated as H1 and H2 haplotype, and contains eight other genes which have been implicated in neurodegeneration. The aim of the current study was to identify common coding variants in strong linkage disequilibrium (LD) within the associated loci on chr17q21 harboring MAPT. METHODS: Sanger sequencing of coding exons in 90 Caucasian late-onset PD (LOPD) patients was performed. Specific gene sequencing for LRRC37A, LRRC37A2, ARL17A and ARL17B was not possible given the high homology, presence of pseudogenes and copy number variants that are in the region, and therefore four genes (NSF, KANSL1, SPPL2C, and CRHR1) were included in the analysis. Coding variants from these four genes that did not perfectly tag (r2 = 1) the MAPT H1/H2 haplotype were genotyped in an independent replication series of Caucasian PD cases (N = 851) and controls (N = 730). RESULTS: In the 90 LOPD cases we identified 30 coding variants. Eleven non-synonymous variants tagged the MAPT H1/H2 haplotype, including two SPPL2C variants (rs12185233 and rs12373123) that had high pathogenic combined annotation dependent depletion (CADD) scores of >20. In the replication series, the non-synonymous KANSL1 rs17585974 variant was in very strong LD with MAPT H1/H2 and had a high CADD score of 24.7. CONCLUSION: We have identified several non-synonymous variants across neighboring genes of MAPT that may warrant further genetic and functional investigation within the biological etiology of PD.


Assuntos
Cromossomos Humanos Par 17/genética , Doença de Parkinson/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Ácido Aspártico Endopeptidases/genética , Estudos de Coortes , Loci Gênicos , Haplótipos , Humanos , Desequilíbrio de Ligação , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas Sensíveis a N-Etilmaleimida/genética , Proteínas Nucleares/genética , Análise de Sequência de DNA , População Branca
14.
Mov Disord ; 35(5): 890-894, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32142177

RESUMO

BACKGROUND: Intronic variant rs564309 in tripartite motif containing 11 (TRIM11) is associated with clinical phenotypic differences in progressive supranuclear palsy (PSP), whereby the minor allele (A) is more common in atypical PSP than typical PSP (PSP-Richardson's syndrome). However, rs564309 has not been investigated relative to neuropathological outcomes. OBJECTIVE: Evaluate the association of rs564309 with the neuropathologically assessed severity of tau pathology, as measured by semi-quantitative scores for neurofibrillary tangles, tufted astrocytes, neuropil threads, and oligodendroglial coiled bodies. METHODS: 797 neuropathologically confirmed PSP cases were genotyped for TRIM11 rs564309 and assessed for tau pathology across 20 neuroanatomical regions. Tau pathology measures and age at death were examined for association with TRIM11 rs564309-A using multivariable linear regression models. RESULTS: TRIM11 rs564309-A was associated with increased neurofibrillary tangles pathology (P = 0.050), but was not significantly associated with age at death, neuropil threads, coiled bodies, or tufted astrocytes tau pathology scores. CONCLUSIONS: TRIM11 rs564309 may influence burden of neurofibrillary tangles tau pathology in PSP; further study is warranted. © 2020 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Paralisia Supranuclear Progressiva , Astrócitos , Humanos , Emaranhados Neurofibrilares , Paralisia Supranuclear Progressiva/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Proteínas tau/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...