Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
iScience ; 27(6): 109792, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38784020

RESUMO

Photothermal conversion represents one crucial approach for solar energy harvesting and its exploitation as a sustainable alternative to fossil fuels; however, an efficient, cost-effective, and generalized approach to enhance the photothermal conversion processes is still missing. Herein, we develop a feasible and efficient photothermal conversion strategy that achieves simultaneous light and heat management using supported metal clusters and WSe2 interlayer toward enhanced CO2 hydrogenation photothermal catalysis. The interlayer can simultaneously reduce heat loss in the catalytic layer and improve light absorption, leading to an 8-fold higher CO2 conversion rate than the controls. The optical and thermal performance of WSe2 interlayered catalysts on different substrates was quantified using Raman spectroscopy. This work demonstrates a feasible and generalized approach for effective light and heat management in solar harvesting. It also provides important design guidelines for efficient photothermal converters that facilitate the remediation of the energy and environmental crises faced by humans.

2.
Chem Asian J ; 19(5): e202301077, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153206

RESUMO

Photothermal catalytic CO2 hydrogenation holds great promise for relieving the global environment and energy crises. The "nano-greenhouse effect" has been recognized as a crucial strategy for improving the heat management capabilities of a photothermal catalyst by ameliorating the convective and radiative heat losses. Yet it remains unclear to what degree the respective heat transfer and mass transport efficiencies depend on the specific structures. Herein, the structure-function relationship of the "nano-greenhouse effect" was investigated and optimized in a prototypical Ni@SiO2 core-shell catalyst towards photothermal CO2 catalysis. Experimental and theoretical results indicate that modulation of the thickness and porosity of the SiO2 nanoshell leads to variations in both heat preservation and mass transport properties. This work deepens the understandings on the contributing factor of the "nano-greenhouse effect" towards enhanced photothermal conversion. It also provides insights on the design principles of an ideal photothermal catalyst in balancing heat management and mass transport processes.

3.
Anal Methods ; 15(39): 5218-5224, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37781887

RESUMO

The analysis of individual particles with complex morphologies from light scattering is crucial in disperse systems studies, such as blood cells. Characterization, which assumes determining particle characteristics, has a higher likelihood of succeeding in solving the inverse light-scattering problem if an instrument provides enough light-scattering data. In this study, we demonstrate how we extend the operating angular interval for the 4π Scanning Flow Cytometer (4πSFC), which measures angle-resolved light-scattering profiles (LSPs) of individual particles. The angular interval is extended by additionally measuring light scattering for the backward hemisphere. Currently, the 4πSFC setup uses three lasers, a single optical cell, and three photomultipliers. It enables the measurement of the LSP of individual particles within the angular interval of 10 to 170° for polar angles with integration over azimuth angles, which covers the spatial angle of 98.5% of the 4π angle. We demonstrate the 4πSFC's performance in measuring LSPs from the analysis of polymer beads, mature and spherized erythrocytes, and platelets. The 4πSFC has the potential to be very useful in identifying platelet dimers and granulocytes without labels, characterizing lymphocytes, monocytes, and abnormal erythrocytes.


Assuntos
Plaquetas , Luz , Citometria de Fluxo , Espalhamento de Radiação , Granulócitos
4.
J Immunol Methods ; 521: 113555, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37666317

RESUMO

For the quantitative determination of cell receptors by fluorescence flow cytometry, we proposed a new method, which takes into account the reaction kinetics. The binding reaction of the ligand with receptors begins after placing the cells in the ligand solution. In the proposed method, there are several samples with the same concentration of cells and different initial concentrations of fluorescently labeled ligand, and each sample is measured by a flow cytometer once at the time when the following condition is met: the product of the incubation time (cells with ligand) and the initial concentration of ligand is the same for all samples. The proposed approach eliminates disadvantages and combines advantages of both kinetic and titration methods for quantification of receptors on single cells without the use of traditional calibration fluorescent beads. Practical application of the method was demonstrated in quantification of CD8 and CD14 on peripheral blood human leukocytes. Particularly, we found decreased (by a factor of two) mean number of CD14 on monocytes and granulocytes in patients with atherosclerosis (treated in the hospital) compared to conditionally healthy donors, whereas no difference was found in the mean CD8 expression on leukocytes between the same patient and donor groups.


Assuntos
Leucócitos , Receptores de Superfície Celular , Humanos , Ligantes , Citometria de Fluxo , Cinética
5.
Nanomaterials (Basel) ; 13(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686943

RESUMO

Three-layer structures based on various multi-component films of III-V semiconductors heavily doped with Fe were grown using the pulsed laser sputtering of InSb, GaSb, InAs, GaAs and Fe solid targets. The structures comprising these InAsSb:Fe, InGaSb:Fe and InSb:Fe layers with Fe concentrations up to 24 at. % and separated by GaAs spacers were deposited on (001) i-GaAs substrates at 200 °C. Transmission electron microscopy showed that the structures have a rather high crystalline quality and do not contain secondary-phase inclusions. X-ray photoelectron spectroscopy investigations revealed a significant diffusion of Ga atoms from the GaAs regions into the InAsSb:Fe layers, which has led to the formation of an InGaAsSb:Fe compound with a Ga content up to 20 at. %. It has been found that the ferromagnetic properties of the InAsSb:Fe magnetic semiconductor improve with an increasing Sb:As ratio. It has been concluded that the indirect ferromagnetic exchange interaction between Fe atoms occurs predominantly via Sb atoms.

6.
ACS Omega ; 8(37): 33831-33837, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744820

RESUMO

Interaction of the solution droplet surface with gaseous components of the environment can lead to the formation of highly ordered patterns, such as dendrites. Here, we show that these structures can be spontaneously created during the open-air interaction of aqueous solution drop of titanium(III) salt with gaseous NH3 at the contact boundary thereof. The conditions have been identified under which radially ordered dendritic patterns can form on the surface of the TiCl3 solution droplet. The formation of these self-organized dendrite patterns can be attributed to the surface instability manifesting in Marangoni thermal flows in a droplet occurring during open-air fabrication. The composition of as-synthesized structures corresponds to coprecipitated crystalline NH4Cl and amorphous TiO2nH2O. After thermal treatment at 450 °C, TiO2 with the anatase crystal lattice is formed; meanwhile, the ordered dendrite patterns are preserved.

7.
Cytometry A ; 103(9): 736-743, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37306103

RESUMO

Ultraviolet lasers are commonly used in flow cytometry to excite fluorochrome molecules with subsequent measurement of the specific fluorescence of individual cells. In this study, the performance of the ultraviolet light scattering (UVLS) in the analysis of individual particles with flow cytometry has been demonstrated for the first time. The main advantage of the UVLS relates to the improvement of the analysis of submicron particles due to the strong dependence of the scattering efficiency on the wavelength of the incident light. In this work, submicron particles were analyzed using a scanning flow cytometer (SFC) that allows measurements of light scattering in an angle-resolved regime. The measured light-scattering profiles of individual particles were utilized in solution of the inverse light-scattering problem to retrieve the particle characteristics using a global optimization. The standard polystyrene microspheres were successfully characterized from the analysis of UVLS which provided the size and refractive index (RI) of individual beads. We believe that the main application of UVLS relates to the analysis of microparticles in a serum, in particular in the analysis of chylomicrons (CMs). We have demonstrated the performance of the UVLS SFC in the analysis of CMs of a donor. The RI versus size scatterplot of CMs was successfully retrieved from the analysis. The current set-up of the SFC has allowed us to characterize individual CMs starting from the size of 160 nm that provides determination of the CM concentration in a serum with flow cytometry. This feature of the UVLS should help with the analysis of lipid metabolism measuring RI and size map evolution after lipase action.


Assuntos
Micropartículas Derivadas de Células , Raios Ultravioleta , Citometria de Fluxo , Espalhamento de Radiação , Metabolismo dos Lipídeos , Tamanho da Partícula
8.
Cytometry A ; 103(9): 712-722, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37195007

RESUMO

Methods for measuring erythrocyte age distribution are not available as a simple analytical tool. Most of them utilize the fluorescence or radioactive isotopes labeling to construct the age distribution and support physicians with aging indices of donor's erythrocytes. The age distribution of erythrocyte may be a useful snapshot of patient state over 120-days period of life. Previously, we introduced the enhanced assay of erythrocytes with measurement of 48 indices in four categories: concentration/content, morphology, aging and function (10.1002/cyto.a.24554). The aging category was formed by the indices based on the evaluation of the derived age of individual cells. The derived age does not exactly mean the real age of erythrocytes and its evaluation utilizes changes of cellular morphology during a lifespan. In this study, we are introducing the improved methodological approach that allows us to retrieve the derived age of individual erythrocytes, to construct the aging distribution, and to reform the aging category consisting of eight indices. The approach is based on the analysis of the erythrocyte vesiculation. The erythrocyte morphology is analyzed by scanning flow cytometry that measures the primary characteristics (diameter, thickness, and waist) of individual cells. The surface area (S) and sphericity index (SI) are calculated from the primary characteristics and the scattering diagram SI versus S is used in the evaluation of the derived age of each erythrocyte in a sample. We developed the algorithm to evaluate the derived age that provides eight indices in the aging category based on a model using light scatter features. The novel erythrocyte indices were measured for simulated cells and blood samples of 50 donors. We determined the first-ever reference intervals for these indices.


Assuntos
Índices de Eritrócitos , Eritrócitos , Humanos , Lactente , Citometria de Fluxo/métodos
9.
Nanomaterials (Basel) ; 13(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677992

RESUMO

This article discusses the features of the synthesis and application of porous two-dimensional nanomaterials in developing conductometric gas sensors based on metal oxides. It is concluded that using porous 2D nanomaterials and 3D structures based on them is a promising approach to improving the parameters of gas sensors, such as sensitivity and the rate of response. The limitations that may arise when using 2D structures in gas sensors intended for the sensor market are considered.

10.
Cytometry A ; 103(1): 39-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35349217

RESUMO

Molecular/cell level of gas exchange function assumes the accurate measurement of erythrocyte characteristics and rate constants concerning to molecules involved into the CO2 /O2 transport. Unfortunately, common hematology analyzers provide the measurement of eight indices of erythrocytes only and say little about erythrocyte morphology and nothing about rate constants of cellular function. The aim of this study is to demonstrate the ability of the Scanning Flow Cytometer (SFC) in the complete morphological analysis of mature erythrocytes and characterization of erythrocyte function via measurement of lysing kinetics. With this study we are introducing 48 erythrocyte indices. To provide the usability of application of the SFC in clinical diagnosis, we formed four categories of indices which are as follows: content/concentration (9 indices), morphology (26 indices), age (5 indices), and function (8 indices). The erythrocytes of 39 healthy volunteers were analyzed with the SFC to fix the first-ever reference intervals for the new indices introduced. The essential measurable reliability of the presented method is expressed in terms of errors of characteristics of single erythrocytes retrieved from the solution of the inverse light-scattering problem and errors of parameters retrieved from the fitting of the experimental kinetics by molecular-kinetics model of erythrocyte lysis.


Assuntos
Índices de Eritrócitos , Eritrócitos , Humanos , Citometria de Fluxo/métodos , Reprodutibilidade dos Testes , Morte Celular
11.
Anal Methods ; 13(29): 3233-3241, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34184022

RESUMO

Analysis of blood platelets encounters a number of different preanalytical issues, which greatly decrease the reliability and accuracy of routine clinical analysis. Modern hematology analyzers determine only four parameters relating to platelets. Platelet shape and dose-dependent activation parameters are outside the scope of commercial instruments. We used the original scanning flow cytometer for measurement of angle-resolved light scattering and the discrete dipole approximation for simulation of light scattering from a platelet optical model, as an oblate spheroid, and global optimization with two algorithms: the DATABASE algorithm to retrieve platelet characteristics from light scattering and the DIRECT algorithm to retrieve dose-dependent activation parameters. We developed the original sampling protocol to decrease spontaneous platelet activation. The new protocol allows us to keep most of the platelets in resting and partially activated states before analysis. The analysis delivers 13 content and morphological parameters of the platelets. To analyze platelet shape change during ADP activation we developed a phenomenological model. This model was applied to the analysis of ADP activation of platelets to give 8 dose-dependent activation parameters. To demonstrate the applicability of the developed protocol and analytical method, we analyzed platelets from five donors. This novel approach to the analysis of platelets allows the determination of 21 parameters relating to their content, morphology and dose-dependent activation.


Assuntos
Plaquetas , Ativação Plaquetária , Simulação por Computador , Citometria de Fluxo , Humanos , Reprodutibilidade dos Testes
12.
Adv Mater ; 33(22): e2007465, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33893682

RESUMO

Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.


Assuntos
Microfluídica , Nanoestruturas , Microbolhas
13.
ACS Omega ; 5(25): 15728-15733, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32637848

RESUMO

Lepidocrocite (γ-FeOOH) microtubes with scroll morphology prepared by gas-solution interface technique (GSIT) have been modified by silver nanoparticles (Ag NPs). The successive ionic layer deposition (SILD) was first used for the synthesis of the Ag NPs on the lower surface of a solid film freely lying on the surface of a solution. The sizes of Ag NPs are about 15 nm after one synthesis cycle, and their diameters reach 35 nm after three SILD cycles. As a result of vacuum-drying, the modified film is transformed into microtubes with a diameter of about 10 µm and a length of 150 µm in such a way that the inner surface of the microtube is modified by Ag NPs. The catalytic properties of the microtubes have been observed by the decomposition of H2O2 in aqueous solution. The Ag/FeOOH microtubes move in hydrogen peroxide solutions with an average speed of 117 µm/s. This result is based on the synergetic effect between lepidocrocite nanosheets and Ag NPs, which results in the modified microtubes having enhanced mobility.

14.
Langmuir ; 35(47): 14983-14989, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31702162

RESUMO

Anisotropic gradient materials are considered as promising and novel in that they have numerous functional properties and are able to transform into hierarchical microstructures. We report a facile method of gradient inorganic thin film synthesis through diffusion-controlled deposition at the gas-solution interface. To investigate the reaction of interfacial phase boundary controllable hydrolysis by gaseous ammonium, an aqueous solution of FeCl3 and MnCl2 was chosen, as the precipitation pH values for the hydroxides of these metals differ gradually. As a result of synthesis using the gas-solution interface technique (GSIT), a thin film is formed on the surface of the solution that consists of Mn2+(Fe,Mn)23+O4 nanoparticles with hausmannite crystal structure. The ratio between iron and manganese in the film can be adjusted over a wide range by varying the synthetic procedure. Specific conditions are determined that allow the formation of a Mn-Fe mixed oxide film with a gradient of composition, morphology, and properties, as well as its further transformation into microscrolls with a diameter of 10-20 µm and a length of up to 300 µm, showing weak superparamagnetic properties. The technique reported provides a new interfacial route for the development of functional gradient materials with tubular morphology.

15.
Cytometry A ; 95(12): 1275-1284, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31750613

RESUMO

Nifedipine is calcium channels and pumps blocker widely used in medicine. However, mechanisms of nifedipine action in blood are not clear. In particular, the influence of nifedipine on erythrocytes is far from completely understood. In this work, applying scanning flow cytometry, we observed experimentally for the first time the dynamics behind a significant increase of HCO3- /Cl- transmembrane exchange rate of CDB3 (main anion exchanger, AE1, Band 3, SLC4A1) of human erythrocytes in the presence of nifedipine in blood. It was found that the rate of CDB3 activation is not limited by the rate of nifedipine binding and/or Ca2+ transport. In order to explain the experimental data, we suggested a kinetic model assuming that the rate of CDB3 activation is limited by the dynamics of the balance between two intracellular processes (1) the activation of CDB3 limited by its interaction with intracellular Ca2+ , and (2) the spontaneous deactivation of CDB3. Thus the use of scanning flow cytometry allowed to clarify quantitatively the molecular kinetic mechanism of nifedipine action on human erythrocytes. In particular, the efficiency (~30) and rates of activation (~0.3 min-1 ) and deactivation (~10-3 min-1 ) of CDB3 in human erythrocytes was evaluated for two donors. © 2019 International Society for Advancement of Cytometry.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/metabolismo , Eritrócitos/metabolismo , Citometria de Fluxo , Nifedipino/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos
16.
ACS Omega ; 4(26): 22203-22208, 2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31891103

RESUMO

In this work, a chemical reaction between gaseous ozone and aqueous solution of Mn(CH3COO)2 in drops has been researched. It has been shown that the formation of H x MnO2·nH2O nanocrystals with a morphology of nanosheets and a birnessite-like crystal structure with a thickness of 5-8 nm is observed on the surface of drops. These nanocrystals are oriented spontaneously to the solution-gas interface and constitute peculiar ribbons with a width of 1-2 µm, some of which form ordered honeycomb structures (OHS) with a 5-20 µm cell size. To explain the observed effect, the scheme of chemical reactions that take place at the interface between the surface of a drop and ozone has been modeled, and it can be described using a diffusion pattern model taking into account the action of "force fields" on the surface of a drop, which arise due to its curvature. After the drop is dried, these structures practically retain their morphology and form a fractal structure with a geometric area equal to the area of the drop base on the surface of the substrate. The study of the electrocatalytic properties of these structures revealed that they are active electrocatalysts in the oxygen evolution reaction (OER) during water electrolysis in alkaline medium. The most efficient of the obtained electrocatalysts are characterized by an overpotential value of 284 mV at a current of 10 mA/cm2 and the Tafel coefficient of 37.7 mV/dec and are currently one of the best among pure manganese oxides. Finally, it has also been assumed that this effect is explained by the morphological features of the structures obtained, which contribute to the removal of oxygen bubbles from the electrode surface during electrolysis.

17.
Cytometry A ; 93(7): 695-705, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30110130

RESUMO

We propose a calibration-free method to determine the number of receptors per cell, as well as the direct and the reverse reaction rate constants for a single receptor. The method is based on the analysis of the temporal evolution of the cells mean fluorescent intensity measured by a flow cytometer during the ligand-receptor (antigen-antibody) binding under the conditions of their comparable concentrations. We developed the kinetic approach accounting both for the delay between the dilution and the measurement and for the practical duration of the measurement itself. The method was applied to determine thenumber of CD14 receptors on human blood mononuclear (granulocytes, monocytes, lymphocytes) cells of several donors. We also obtained the direct ( k+= (5.6 ± 0.2) × 107 M-1 min-1 ) and reverse ( k-= (1.3 ± 0.2) × 10-2 min-1 ) rate constants of ligand-receptor interaction, and estimated the size of the binding site as b = 0.5 nm. The latter allows one to recalculate the rate constants for a different ligand, fluorescent label, medium viscosity, and/or temperature. The knowledge of the rate constants is essential for the calibration-free determination of the number of receptors per cell from a single kinetic curve of the cells mean fluorescence intensity.


Assuntos
Citometria de Fluxo/métodos , Imunoensaio/métodos , Receptores de Lipopolissacarídeos/química , Sítios de Ligação de Anticorpos , Humanos , Imunoglobulina G/química , Imunoglobulina G/imunologia , Leucócitos/química , Leucócitos/imunologia , Receptores de Lipopolissacarídeos/imunologia , Ligação Proteica
18.
Inorg Chem ; 57(16): 9779-9781, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30080026

RESUMO

Scandium fluoride (ScF3) microtubes with nanoscale wall thickness were for the first time successfully synthesized by an interface-assisted technique at the surface of a scandium nitrate aqueous solution without the addition of any surfactant as a result of interaction with hydrofluoric acid from the gaseous phase in only 30 min. X-ray diffraction analysis, scanning electron microscopy, helium ionic microscopy, transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) were used to examine the morphology and crystal structure of ScF3 microtubes. The results show that the ScF3 microtube is single-crystalline and has a hexagonal structure. A hypothetical model of thin-walled microtube formation is proposed.

19.
Phys Rev Lett ; 120(23): 231103, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932711

RESUMO

We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

20.
J Theor Biol ; 454: 60-69, 2018 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-29859212

RESUMO

The dynamics of nuclear morphology changes during apoptosis remains poorly investigated and understood. Using 3D time-lapse confocal microscopy we performed a study of early-stage apoptotic nuclear morphological changes induced by etoposide in single living HepG2 cells. These observations provide a definitive evidence that nuclear apoptotic volume decrease (AVD) is occurring simultaneously with peripheral chromatin condensation (so called "apoptotic ring"). In order to describe quantitatively the dynamics of nuclear morphological changes in the early stage of apoptosis we suggest a general molecular kinetic model, which fits well the obtained experimental data in our study. Results of this work may clarify molecular mechanisms of nuclear morphology changes during apoptosis.


Assuntos
Apoptose/fisiologia , Núcleo Celular/fisiologia , Modelos Teóricos , Tamanho das Organelas/fisiologia , Análise de Célula Única/métodos , Núcleo Celular/ultraestrutura , Cromatina/química , Cromatina/metabolismo , Cromatina/ultraestrutura , Empacotamento do DNA , Células Hep G2 , Humanos , Imageamento Tridimensional , Cinética , Microscopia Confocal , Imagem com Lapso de Tempo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...