Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 77(7): 1753-1762, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202522

RESUMO

Chromatin-based mechanisms offer therapeutic targets in acute myeloid leukemia (AML) that are of great current interest. In this study, we conducted an RNAi-based screen to identify druggable chromatin regulator-based targets in leukemias marked by oncogenic rearrangements of the MLL gene. In this manner, we discovered the H4K16 histone acetyltransferase (HAT) MOF to be important for leukemia cell growth. Conditional deletion of Mof in a mouse model of MLL-AF9-driven leukemogenesis reduced tumor burden and prolonged host survival. RNA sequencing showed an expected downregulation of genes within DNA damage repair pathways that are controlled by MOF, as correlated with a significant increase in yH2AX nuclear foci in Mof-deficient MLL-AF9 tumor cells. In parallel, Mof loss also impaired global H4K16 acetylation in the tumor cell genome. Rescue experiments with catalytically inactive mutants of MOF showed that its enzymatic activity was required to maintain cancer pathogenicity. In support of the role of MOF in sustaining H4K16 acetylation, a small-molecule inhibitor of the HAT component MYST blocked the growth of both murine and human MLL-AF9 leukemia cell lines. Furthermore, Mof inactivation suppressed leukemia development in an NUP98-HOXA9-driven AML model. Taken together, our results establish that the HAT activity of MOF is required to sustain MLL-AF9 leukemia and may be important for multiple AML subtypes. Blocking this activity is sufficient to stimulate DNA damage, offering a rationale to pursue MOF inhibitors as a targeted approach to treat MLL-rearranged leukemias. Cancer Res; 77(7); 1753-62. ©2017 AACR.


Assuntos
Histona Acetiltransferases/fisiologia , Leucemia/etiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Animais , Linhagem Celular Tumoral , Dano ao DNA , Feminino , Histona Acetiltransferases/antagonistas & inibidores , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Proteínas Formadoras de Poros Nucleares/genética
2.
Blood ; 129(1): 48-59, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27827827

RESUMO

K(lysine) acetyltransferase 8 (KAT8, also known as MOF) mediates the acetylation of histone H4 at lysine 16 (H4K16ac) and is crucial for murine embryogenesis. Lysine acetyltransferases have been shown to regulate various stages of normal hematopoiesis. However, the function of MOF in hematopoietic stem cell (HSC) development has not yet been elucidated. We set out to study the role of MOF in general hematopoiesis by using a Vav1-cre-induced conditional murine Mof knockout system and found that MOF is critical for hematopoietic cell maintenance and HSC engraftment capacity in adult hematopoiesis. Rescue experiments with a MOF histone acetyltransferase domain mutant illustrated the requirement for MOF acetyltransferase activity in the clonogenic capacity of HSCs and progenitors. In stark contrast, fetal steady-state hematopoiesis at embryonic day (E) 14.5 was not affected by homozygous Mof deletion despite dramatic loss of global H4K16ac. Hematopoietic defects start manifesting in late gestation at E17.5. The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoiesis at varying stages of development. MOF is therefore a developmental-stage-specific chromatin regulator found to be essential for adult but not early fetal hematopoiesis.


Assuntos
Hematopoese/fisiologia , Histona Acetiltransferases/metabolismo , Animais , Feto , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Cancer Cell ; 30(6): 863-878, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27889185

RESUMO

The nucleoporin 98 gene (NUP98) is fused to a variety of partner genes in multiple hematopoietic malignancies. Here, we demonstrate that NUP98 fusion proteins, including NUP98-HOXA9 (NHA9), NUP98-HOXD13 (NHD13), NUP98-NSD1, NUP98-PHF23, and NUP98-TOP1 physically interact with mixed lineage leukemia 1 (MLL1) and the non-specific lethal (NSL) histone-modifying complexes. Chromatin immunoprecipitation sequencing illustrates that NHA9 and MLL1 co-localize on chromatin and are found associated with Hox gene promoter regions. Furthermore, MLL1 is required for the proliferation of NHA9 cells in vitro and in vivo. Inactivation of MLL1 leads to decreased expression of genes bound by NHA9 and MLL1 and reverses a gene expression signature found in NUP98-rearranged human leukemias. Our data reveal a molecular dependency on MLL1 function in NUP98-fusion-driven leukemogenesis.


Assuntos
Cromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas de Homeodomínio/genética , Leucemia/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/metabolismo , Animais , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Regiões Promotoras Genéticas , Células Tumorais Cultivadas
4.
Cancer Cell ; 29(4): 464-476, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070701

RESUMO

The epigenome is a key determinant of transcriptional output. Perturbations within the epigenome are thought to be a key feature of many, perhaps all cancers, and it is now clear that epigenetic changes are instrumental in cancer development. The inherent reversibility of these changes makes them attractive targets for therapeutic manipulation, and a number of small molecules targeting chromatin-based mechanisms are currently in clinical trials. In this perspective we discuss how understanding the cancer epigenome is providing insights into disease pathogenesis and informing drug development. We also highlight additional opportunities to further unlock the therapeutic potential within the cancer epigenome.


Assuntos
Transformação Celular Neoplásica/genética , Epigenômica , Regulação Neoplásica da Expressão Gênica , Terapia de Alvo Molecular , Neoplasias/genética , Terapias em Estudo , Animais , Antineoplásicos/farmacocinética , Cromatina/efeitos dos fármacos , Cromatina/genética , Aberrações Cromossômicas , Ensaios Clínicos como Assunto , Metilação de DNA/efeitos dos fármacos , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Código das Histonas/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Humanos , Camundongos , Modelos Genéticos , Mutação , Proteínas de Neoplasias/metabolismo , Neoplasias/prevenção & controle , Neoplasias/terapia , Proteínas Oncogênicas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA