Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6220, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37798285

RESUMO

Calcium in interstitial fluids is central to systemic physiology and a crucial ion pool for entry into cells through numerous plasma membrane channels. Its study has been limited by the scarcity of methods that allow monitoring in tight inter-cell spaces of living tissues. Here we present high performance ultra-low affinity genetically encoded calcium biosensors named GreenT-ECs. GreenT-ECs combine large fluorescence changes upon calcium binding and binding affinities (Kds) ranging from 0.8 mM to 2.9 mM, making them tuned to calcium concentrations in extracellular organismal fluids. We validated GreenT-ECs in rodent hippocampal neurons and transgenic zebrafish in vivo, where the sensors enabled monitoring homeostatic regulation of tissue interstitial calcium. GreenT-ECs may become useful for recording very large calcium transients and for imaging calcium homeostasis in inter-cell structures in live tissues and organisms.


Assuntos
Cálcio , Peixe-Zebra , Animais , Cálcio/metabolismo , Peixe-Zebra/metabolismo , Fluorescência , Sinalização do Cálcio/fisiologia , Diagnóstico por Imagem , Corantes
2.
J Physiol ; 601(19): 4217-4226, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073135

RESUMO

Calcium in interstitial fluids is a crucial ion pool for entry into cells through a plethora of calcium-permeable channels. It is also sensed actively by dedicated receptors. While the mechanisms of global calcium homeostasis and regulation in body fluids appear well understood, more efforts and new technology are needed to elucidate local calcium handling in the small and relatively isolated interstitial spaces between cells. Here we review current methodology for monitoring interstitial calcium and highlight the potential of new approaches for its study. In particular, new generations of high-performance low-affinity genetically encoded calcium indicators could allow imaging of calcium in relatively inaccessible intercellular structures in live tissues and organisms.


Assuntos
Canais de Cálcio , Cálcio , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Cálcio da Dieta , Sinalização do Cálcio
3.
J Mol Cell Cardiol ; 173: 127-140, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273660

RESUMO

The phospholamban mutation Arg 9 to Cys (R9C) has been found to cause a dilated cardiomyopathy in humans and in transgenic mice, with ventricular dilation and premature death. Emerging evidence suggests that phospholamban R9C is a loss-of-function mutation with dominant negative effect on SERCA2a activity. We imaged calcium and cardiac contraction simultaneously in 3 and 9 days-post-fertilization (dpf) zebrafish larvae expressing plnbR9C in the heart to unveil the early pathological pathway that triggers the disease. We generated transgenic zebrafish lines expressing phospholamban wild-type (Tg(myl7:plnbwt)) and phospholamban R9C (Tg(myl7:plnbR9C)) in the heart of zebrafish. To measure calcium and cardiac contraction in 3 and 9 dpf larvae, Tg(myl7:plnbwt) and Tg(myl7:plnbR9C) fish were outcrossed with a transgenic line expressing the ratiometric fluorescent calcium biosensor mCyRFP1-GCaMP6f. We found that PlnbR9C raised calcium transient amplitude, induced positive inotropy and lusitropy, and blunted the ß-adrenergic response to isoproterenol in 3 dpf larvae. These effects can be attributed to enhanced SERCA2a activity induced by the PlnbR9C mutation. In contrast, Tg(myl7:plnbR9C) larvae at 9 dpf exhibited ventricular dilation, systolic dysfunction and negative lusitropy, hallmarks of a dilated cardiomyopathy in humans. Importantly, N-acetyl-L-cysteine rescued this deleterious phenotype, suggesting that reactive oxygen species contribute to the pathological pathway. These results also imply that dysregulation of calcium homeostasis during embryo development contributes to the disease progression at later stages. Our in vivo model in zebrafish allows characterization of pathophysiological mechanisms leading to heart disease, and can be used for screening of potential therapeutical agents.


Assuntos
Proteínas de Ligação ao Cálcio , Cálcio , Contração Miocárdica , Peixe-Zebra , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cardiomegalia , Cardiomiopatia Dilatada/patologia , Mutação , Peixe-Zebra/genética
4.
Biochim Biophys Acta Proteins Proteom ; 1868(1): 140298, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31676453

RESUMO

The misfolding and aggregation of alpha-synuclein (aSyn) are thought to be central events in synucleinopathies. The physiological function of aSyn has been related to vesicle binding and trafficking, but the precise molecular mechanisms leading to aSyn pathogenicity are still obscure. In cell models, aSyn does not readily aggregate, even upon overexpression. Therefore, cellular models that enable the study of aSyn aggregation are essential tools for our understanding of the molecular mechanisms that govern such processes. Here, we investigated the structural features of SynT, an artificial variant of aSyn that has been widely used as a model of aggregation in mammalian cell systems, since it is more prone to aggregation than aSyn. Using Nuclear Magnetic Resonance (NMR) spectroscopy we performed a detailed structural characterization of SynT through a systematic comparison with normal, unmodified aSyn. Interestingly, we found that the conformations adopted by SynT resemble those described for the unmodified protein, demonstrating the usefulness of SynT as a model for aSyn aggregation. However, subtle differences were observed at the N-terminal region involving transient intra and/or intermolecular interactions that are known to regulate aSyn aggregation. Importantly, our results indicate that disturbances in the N-terminal region of SynT, and the consequent decrease in membrane binding of the modified protein, might contribute to the observed aggregation behavior of aSyn, and validate the use of SynT, one of the few models of aSyn aggregation in cultured cells.


Assuntos
Sinucleinopatias , alfa-Sinucleína/química , Linhagem Celular Tumoral , Escherichia coli/genética , Humanos , Microscopia Eletrônica de Transmissão , Agregação Patológica de Proteínas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestrutura
5.
Biophys J ; 114(5): 1036-1045, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29539391

RESUMO

The inherent tendency of proteins to convert from their native states into amyloid aggregates is associated with a range of human disorders, including Alzheimer's and Parkinson's diseases. In that sense, the use of small molecules as probes for the structural and toxic mechanism related to amyloid aggregation has become an active area of research. Compared with other compounds, the structural and molecular basis behind the inhibitory interaction of phthalocyanine tetrasulfonate (PcTS) with proteins such as αS and tau has been well established, contributing to a better understanding of the amyloid aggregation process in these proteins. We present here the structural characterization of the binding of PcTS and its Cu(II) and Zn(II)-loaded forms to the amyloid ß-peptide (Aß) and the impact of these interactions on the peptide amyloid fibril assembly. Elucidation of the PcTS binding modes to Aß40 revealed the involvement of specific aromatic and hydrophobic interactions in the formation of the Aß40-PcTS complex, ascribed to a binding mode in which the planarity and hydrophobicity of the aromatic ring system in the phthalocyanine act as main structural determinants for the interaction. Our results demonstrated that formation of the Aß40-PcTS complex does not interfere with the progression of the peptide toward the formation of amyloid fibrils. On the other hand, conjugation of Zn(II) but not Cu(II) at the center of the PcTS macrocyclic ring modified substantially the binding profile of this phthalocyanine to Aß40 and became crucial to reverse the effects of metal-free PcTS on the fibril assembly of the peptide. Overall, our results provide a firm basis to understand the structural rules directing phthalocyanine-protein interactions and their implications on the amyloid fibril assembly of the target proteins; in particular, our results contradict the hypothesis that PcTS might have similar mechanisms of action in slowing the formation of a variety of pathological aggregates.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Indóis/metabolismo , Indóis/farmacologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Isoindóis , Ligação Proteica
6.
Acc Chem Res ; 49(5): 801-8, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27136297

RESUMO

The aggregation of proteins into toxic conformations plays a critical role in the development of different neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Creutzfled-Jakob's disease (CJD). These disorders share a common pathological mechanism that involves the formation of aggregated protein species including toxic oligomers and amyloid fibrils. The aggregation of alpha-synuclein (αS) in PD and the amyloid beta peptide (Aß) and tau protein in AD results in neuronal death and disease onset. In the case of CJD, the misfolding of the physiological prion protein (PrP) induces a chain reaction that results in accumulation of particles that elicit brain damage. Currently, there is no preventive therapy for these diseases and the available therapeutic approaches are based on the treatment of the symptoms rather than the underlying causes of the disease. Accordingly, the aggregation pathway of these proteins represents a useful target for therapeutic intervention. Therefore, understanding the mechanism of amyloid formation and its inhibition is of high clinical importance. The design of small molecules that efficiently inhibit the aggregation process and/or neutralize its associated toxicity constitutes a promising tool for the development of therapeutic strategies against these disorders. In this accounts, we discuss current knowledge on the anti-amyloid activity of phthalocyanines and their potential use as drug candidates in neurodegeneration. These tetrapyrrolic compounds modulate the amyloid assembly of αS, tau, Aß, and the PrP in vitro, and protect cells from the toxic effects of amyloid aggregates. In addition, in scrapie-infected mice, these compounds showed important prophylactic antiscrapie properties. The structural basis for the inhibitory effect of phthalocyanines on amyloid filament assembly relies on specific π-π interactions between the aromatic ring system of these molecules and aromatic residues in the amyloidogenic proteins. Analysis of the structure-activity relationship in phthalocyanines revealed that their anti-amyloid activity is highly dependent on the type of metal ion coordinated to the tetrapyrrolic system but is not sensitive to the number of peripheral charged substituents. The tendency of phthalocyanines to oligomerize (self-association) via aromatic-aromatic stacking interactions correlates precisely with their binding capabilities to target proteins and, more importantly, determines their efficiency as anti-amyloid agents. The ability to block different types of disease-associated protein aggregation raises the possibility that these cyclic tetrapyrrole compounds have a common mechanism of action to impair the formation of a variety of pathological aggregates. Because the structural and molecular basis for the anti-amyloid effects of these molecules is starting to emerge, combined efforts from the fields of structural, cellular, and animal biology will result critical for the rational design and discovery of new drugs for the treatment of amyloid related neurological disorders.


Assuntos
Indóis/química , Doenças Neurodegenerativas/metabolismo , Proteínas/metabolismo , Humanos , Isoindóis , Ligação Proteica , Proteínas/química , Relação Estrutura-Atividade
7.
J Am Chem Soc ; 137(20): 6444-7, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25939020

RESUMO

Growing evidence supports a link between brain copper homeostasis, the formation of alpha-synuclein (AS)-copper complexes, and the development of Parkinson disease (PD). Recently it was demonstrated that the physiological form of AS is N-terminally acetylated (AcAS). Here we used NMR spectroscopy to structurally characterize the interaction between Cu(I) and AcAS. We found that the formation of an AcAS-Cu(I) complex at the N-terminal region stabilizes local conformations with α-helical secondary structure and restricted motility. Our work provides new evidence into the metallo-biology of PD and opens new lines of research as the formation of AcAS-Cu(I) complex might impact on AcAS membrane binding and aggregation.


Assuntos
Cobre/química , Compostos Organometálicos/química , alfa-Sinucleína/química , Acetilação , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Dobramento de Proteína
8.
Inorg Chem ; 53(9): 4350-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24725094

RESUMO

Amyloid aggregation of α-synuclein (AS) has been linked to the pathological effects associated with Parkinson's disease (PD). Cu(II) binds specifically at the N-terminus of AS and triggers its aggregation. Site-specific Cu(I)-catalyzed oxidation of AS has been proposed as a plausible mechanism for metal-enhanced AS amyloid formation. In this study, Cu(I) binding to AS was probed by NMR spectroscopy, in combination with synthetic peptide models, site-directed mutagenesis, and C-terminal-truncated protein variants. Our results demonstrate that both Met residues in the motif (1)MDVFM(5) constitute key structural determinants for the high-affinity binding of Cu(I) to the N-terminal region of AS. The replacement of one Met residue by Ile causes a dramatic decrease in the binding affinity for Cu(I), whereas the removal of both Met residues results in a complete lack of binding. Moreover, these Met residues can be oxidized rapidly after air exposure of the AS-Cu(I) complex, whereas Met-116 and Met-127 in the C-terminal region remain unaffected. Met-1 displays higher susceptibility to oxidative damage compared to Met-5 because it is directly involved in both Cu(II) and Cu(I) coordination, resulting in closer exposure to the reactive oxygen species that may be generated by the redox cycling of copper. Our findings support a mechanism where the interaction of AS with copper ions leads to site-specific metal-catalyzed oxidation in the protein under physiologically relevant conditions. In light of recent biological findings, these results support a role for AS-copper interactions in neurodegeneration in PD.


Assuntos
Cobre/química , Doença de Parkinson/metabolismo , alfa-Sinucleína/química , Catálise , Cobre/metabolismo , Oxirredução , Ligação Proteica , Espectroscopia de Prótons por Ressonância Magnética , alfa-Sinucleína/metabolismo
9.
J Inorg Biochem ; 117: 334-41, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22832069

RESUMO

α-Synuclein (AS) aggregation is associated to neurodegeneration in Parkinson's disease (PD). At the same time, alterations in metal ion homeostasis may play a pivotal role in the progression of AS amyloid assembly and the onset of PD. Elucidation of the structural basis directing AS-metal interactions and their effect on AS aggregation constitutes a key step towards understanding the role of metal ions in AS amyloid formation and neurodegeneration. Despite of the reported evidences that link Zn(2+) with the pathophysiology of PD and the fact that this metal ion was shown to promote AS fibrillation in vitro, neither the structural characterization of the binding sites nor the identification of the amino acids involved in the interaction of Zn(2+) with the protein AS has been carried out. By using NMR spectroscopy, we have addressed here unknown structural details related to the binding of Zn(2+) to the protein AS through the design of site-directed and domain truncated mutants of AS. The binding of zinc to the Aß peptide was also studied and discussed comparatively. Although the results of this study contribute to the understanding of the structural and molecular basis behind the acceleration of AS fibrillation mediated by Zn(2+), the low affinity that characterizes the interaction of Zn(2+) with AS contrasts strongly with the high-affinity features reported for the binding of this metal ion to other target proteins linked to human amylodosis such as Aß peptide and the Islet Amyloid Polypeptide (IAPP), challenging the biological relevance of zinc interactions in the pathogenesis of PD.


Assuntos
Peptídeos beta-Amiloides/química , Zinco/química , alfa-Sinucleína/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Relação Estrutura-Atividade , alfa-Sinucleína/genética
10.
Exp Parasitol ; 127(3): 672-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21118687

RESUMO

Repetitive proteins (RP) of Trypanosoma cruzi are highly present in the parasite and are strongly recognized by sera from Chagas' disease patients. Flagelar Repetitive Antigen (FRA), which is expressed in all steps of the parasite life cycle, is the RP that displays the greatest number of aminoacids per repeat and has been indicated as one of the most suitable candidate for diagnostic test because of its high performance in immunoassays. Here we analyzed the influence of the number of repeats on the immunogenic and antigenic properties of the antigen. Recombinant proteins containing one, two, and four tandem repeats of FRA (FRA1, FRA2, and FRA4, respectively) were obtained and the immune response induced by an equal amount of repeats was evaluated in a mouse model. The reactivity of specific antibodies present in sera from patients naturally infected with T. cruzi was also assessed against FRA1, FRA2, and FRA4 proteins, and the relative avidity was analyzed. We determined that the number of repeats did not increase the humoral response against the antigen and this result was reproduced when the repeated motifs were alone or fused to a non-repetitive protein. By contrast, the binding affinity of specific human antibodies increases with the number of repeated motifs in FRA antigen. We then concluded that the high ability of FRA to be recognized by specific antibodies from infected individuals is mainly due to a favorable polyvalent interaction between the antigen and the antibodies. In accordance with experimental results, a 3D model was proposed and B epitope in FRA1, FRA2, and FRA4 were predicted.


Assuntos
Antígenos de Protozoários/imunologia , Proteínas de Protozoários/imunologia , Sequências Repetitivas de Aminoácidos/imunologia , Trypanosoma cruzi/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Afinidade de Anticorpos , Antígenos de Protozoários/química , Antígenos de Protozoários/genética , Doença de Chagas/imunologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Soros Imunes/imunologia , Camundongos , Conformação Molecular , Plasmídeos , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Sequências Repetitivas de Aminoácidos/genética , Sequências de Repetição em Tandem/genética , Sequências de Repetição em Tandem/imunologia , Trypanosoma cruzi/genética
11.
J Am Chem Soc ; 133(2): 194-6, 2011 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-21158432

RESUMO

The aggregation of α-synuclein (AS) is selectively enhanced by copper in vitro, and the interaction is proposed to play a potential role in vivo. In this work, we report the structural, residue-specific characterization of Cu(I) binding to AS and demonstrate that the protein is able to bind Cu(I) with relatively high affinity in a coordination environment that involves the participation of Met1 and Met5 residues. This knowledge is a key to understanding the structural-aggregation basis of the copper-catalyzed oxidation of AS.


Assuntos
Cobre/química , alfa-Sinucleína/química , Espectroscopia de Ressonância Magnética , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...