Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 10(1): 146, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31113444

RESUMO

BACKGROUND: Survival and therapeutic actions of bone marrow-derived mesenchymal stem cells (BMMSCs) can be limited by the hostile microenvironment present during acute spinal cord injury (SCI). Here, we investigated whether BMMSCs overexpressing insulin-like growth factor 1 (IGF-1), a cytokine involved in neural development and injury repair, improved the therapeutic effects of BMMSCs in SCI. METHODS: Using a SCI contusion model in C57Bl/6 mice, we transplanted IGF-1 overexpressing or wild-type BMMSCs into the lesion site following SCI and evaluated cell survival, proliferation, immunomodulation, oxidative stress, myelination, and functional outcomes. RESULTS: BMMSC-IGF1 transplantation was associated with increased cell survival and recruitment of endogenous neural progenitor cells compared to BMMSC- or saline-treated controls. Modulation of gene expression of pro- and anti-inflammatory mediators was observed after BMMSC-IGF1 and compared to saline- and BMMSC-treated mice. Treatment with BMMSC-IGF1 restored spinal cord redox homeostasis by upregulating antioxidant defense genes. BMMSC-IGF1 protected against SCI-induced myelin loss, showing more compact myelin 28 days after SCI. Functional analyses demonstrated significant gains in BMS score and gait analysis in BMMSC-IGF1, compared to BMMSC or saline treatment. CONCLUSIONS: Overexpression of IGF-1 in BMMSC resulted in increased cell survival, immunomodulation, myelination, and functional improvements, suggesting that IGF-1 facilitates the regenerative actions of BMMSC in acute SCI.


Assuntos
Fator de Crescimento Insulin-Like I/genética , Transplante de Células-Tronco Mesenquimais , Células-Tronco Neurais/transplante , Traumatismos da Medula Espinal/terapia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular/genética , Modelos Animais de Doenças , Humanos , Células-Tronco Mesenquimais/citologia , Camundongos , Bainha de Mielina/genética , Bainha de Mielina/patologia , Células-Tronco Neurais/citologia , Recuperação de Função Fisiológica , Regeneração/genética , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia
2.
PLoS Negl Trop Dis ; 9(8): e0004032, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317855

RESUMO

BACKGROUND: The fungus Paracoccidioides brasiliensis is the leading etiological agent of paracoccidioidomycosis (PCM), a systemic granulomatous disease that typically affects the lungs. Cell wall components of P. brasiliensis interact with host cells and influence the pathogenesis of PCM. In yeast, many glycosylphosphatidylinositol (GPI)-anchored proteins are important in the initial contact with the host, mediating host-yeast interactions that culminate with the disease. PbPga1 is a GPI anchored protein located on the surface of the yeast P. brasiliensis that is recognized by sera from PCM patients. METHODOLOGY/PRINCIPAL FINDINGS: Endogenous PbPga1 was localized to the surface of P. brasiliensis yeast cells in the lungs of infected mice using a polyclonal anti-rPbPga1 antibody. Furthermore, macrophages stained with anti-CD38 were associated with P. brasiliensis containing granulomas. Additionally, rPbPga1 activated the transcription factor NFkB in the macrophage cell line Raw 264.7 Luc cells, containing the luciferase gene downstream of the NFkB promoter. After 24 h of incubation with rPbPga1, alveolar macrophages from BALB/c mice were stimulated to release TNF-α, IL-4 and NO. Mast cells, identified by toluidine blue staining, were also associated with P. brasiliensis containing granulomas. Co-culture of P. Brasiliensis yeast cells with RBL-2H3 mast cells induced morphological changes on the surface of the mast cells. Furthermore, RBL-2H3 mast cells were degranulated by P. brasiliensis yeast cells, but not by rPbPga1, as determined by the release of beta-hexosaminidase. However, RBL-2H3 cells activated by rPbPga1 released the inflammatory interleukin IL-6 and also activated the transcription factor NFkB in GFP-reporter mast cells. The transcription factor NFAT was not activated when the mast cells were incubated with rPbPga1. CONCLUSIONS/SIGNIFICANCE: The results indicate that PbPga1 may act as a modulator protein in PCM pathogenesis and serve as a useful target for additional studies on the pathogenesis of P. brasiliensis.


Assuntos
Proteínas Fúngicas/imunologia , Macrófagos/imunologia , Mastócitos/imunologia , NF-kappa B/imunologia , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Animais , Proteínas Fúngicas/genética , Humanos , Interleucina-6/genética , Interleucina-6/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/genética , Paracoccidioides/genética , Paracoccidioidomicose/genética , Paracoccidioidomicose/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...